Algebra

Problemi dimostrativi (lavoro singolo)

1. Consideriamo il polinomio

$$p(x) = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1.$$

Determinare quale resto si ottiene dividendo $p(x^7)$ per p(x).

2. Siano xe ynumeri reali tali che $x^2+y^2\leq 1,$ e siano ae bnumeri reali. Dimostrare che

$$(ax + by - 1)^2 \ge (x^2 + y^2 - 1)(a^2 + b^2 - 1).$$

3. Determinare se esistono funzioni $f: \mathbb{Z} \to \mathbb{Z}$ tali che

$$f(x + f(y)) = f(x) - y$$

per ogni x e y interi.

Determinare quindi tutte le funzioni $f: \mathbb{C} \to \mathbb{C}$ che soddisfano la stessa relazione per ogni x e y complessi.

Problemi dimostrativi (lavoro di gruppo)

- 4. Sia b la più grande radice reale del polinomio $x^3 3x^2 + 1$. Dimostrare che $[b^{1788}]$ e $[b^{1988}]$ sono multipli di 17.
- 5. Sia c un numero reale, e sia a_1,\ldots,a_n,\ldots una successione infinita di numeri reali tali che $0\leq a_i\leq c$ per ogni $i\geq 1$, e

$$|a_i - a_j| \ge \frac{1}{i+j}$$

per ogni $i \neq j$.

Dimostrare che $c \geq 1$.

6. Siano a, b, c numeri reali positivi. Dimostrare che

$$\frac{\sqrt{ab} + \sqrt{bc} + \sqrt{ca}}{3} \le \sqrt[3]{\frac{a+b}{2} \cdot \frac{b+c}{2} \cdot \frac{c+a}{2}}.$$

7. Determinare tutte le funzioni $f: \mathbb{R} \to \mathbb{R}$ tali che

$$f(x^2 - y^2) = xf(x) - yf(y)$$

per ogni x e y reali.

Combinatoria

Problemi dimostrativi (lavoro singolo)

1. La ruota della fortuna è suddivisa in 30 settori, numerati con 50, 100, 150, ..., 1450, 1500 (non necessariamente nell'ordine).

Dimostrare che esistono almeno tre settori consecutivi la somma dei cui numeri è maggiore o uguale a 2350. Determinare se la tesi rimane vera anche se si aggiunge un 31-esimo settore numerato con 0.

2. Sulla lavagna sono scritti gli interi da 1 a 100 (compresi). Ad ogni mossa possiamo rimpiazzare due interi a e b con un intero a scelta tra a+b, a-5b, 7a-11b (in questo modo il numero degli interi scritti diminuisce di uno).

Determinare se è possibile rimanere alla fine con un solo zero.

3. Determinare il numero degli interi positivi $< 2^{13}$ che, scritti in base 2, non hanno 3 cifre uguali consecutive (ovviamente gli zeri iniziali non contano).

Problemi dimostrativi (lavoro di gruppo)

- 4. Sui vertici di un n-agono regolare $(n \ge 3)$ sono scritti i numeri da 1 a n in modo tale che, se tre vertici A, B, C hanno la proprietà che AB = AC, allora il numero scritto su A è o maggiore di entrambi i numeri scritti su B e C, oppure minore di entrambi. Determinare per quali valori di n questo è possibile.
- 5. Sia X l'insieme dei punti di \mathbb{R}^3 a coordinate intere. Se $\mathbf{x} = (x_1, x_2, x_3)$ e $\mathbf{y} = (y_1, y_2, y_3)$ sono due elementi di X, definiamo

$$d(\mathbf{x}, \mathbf{y}) = |x_1 - y_1| + |x_2 - y_2| + |x_3 - y_3|.$$

Dimostrare che esiste un sottoinsieme A di X tale che, per ogni $\mathbf{x} \in X$, esiste esattamente un elemento $\mathbf{a} \in A$ con $d(\mathbf{a}, \mathbf{x}) \in \{0, 1\}$.

6. Una catena è costituita da 54 quadrati di lato 1 uniti "diagonalmente", cioè in modo tale che due quadrati consecutivi della catena sono attaccati in un solo vertice, e che ogni quadrato (non all'inizio o alla fine della catena) è attaccato ai suoi due quadrati vicini in vertici opposti.

Determinare se è possibile utilizzare questa catena per ricoprire la superficie di un cubo di lato 3 (si intende che i quadrati della catena possono essere ruotati intorno ai punti di giunzione, ma non si possono spezzare le giunzioni).

7. Una successione di n interi positivi (non necessariamente distinti) è detta completa se soddisfa le seguenti proprietà: se la successione contiene un intero $k \geq 2$, allora contiene l'intero k-1, ed inoltre la prima comparsa di k-1 precede l'ultima comparsa di k nella successione.

Determinare quante sono le successioni complete con n termini.

Geometria

Problemi dimostrativi (lavoro singolo)

- 1. Siano AM e BN altezze di un triangolo acutangolo ABC. I punti K e T sono rispettivamente sulle semirette MA ed NB in modo tale che MK = MB e NT = NA.
 - (a) Trovare quali condizioni sul triangolo ABC assicurano che i punti K e T siano distinti.
 - (b) Nel caso in cui K e T sono distinti, dimostrare che KT è parallelo a MN.
- 2. Data una circonferenza ed un punto A interno ad essa, si consideri la generica corda passante per A, e sia M il punto di intersezione delle tangenti alla circonferenza nei due estremi della corda.

Determinare il luogo dei punti M.

3. Il triangolo ABC ha i lati AB e AC non congruenti. La bisettrice in A incontra l'asse di BC in X. La retta passante per i piedi delle perpendicolari da X ad AB e AC incontra BC in D.

Determinare BD/DC.

4. Dimostrare che i tre segmenti che congiungono i vertici di un triangolo con il centro del quadrato costruito sul lato opposto (esternamente al triangolo) sono concorrenti.

Problemi dimostrativi (lavoro di gruppo)

5. Dato un triangolo ABC si tracci una retta passante per il baricentro M che incontri AB in K, AC in L e il prolungamento di BC in P (C giace fra P e B).

Dimostrare che

$$\frac{1}{MK} = \frac{1}{ML} + \frac{1}{MP}.$$

6. Sia ABCD un quadrilatero (convesso) ciclico.

Dimostrare che gli incentri dei triangoli ABC, BCD, CDA e DAB sono i vertici di un rettangolo.

7. Sia G il baricentro del triangolo ABC, e siano X un punto di AB e Y un punto di AC in modo tale che G sta dalla parte opposta di XY rispetto a B e C.

Dimostrare che

$$Area(BXGY) + Area(CYGX) \ge \frac{4}{9}Area(ABC).$$

Teoria dei numeri

Problemi dimostrativi (lavoro singolo)

1. Determinare tutte le terne (p, q, n) in cui $p \in q$ sono primi, n è intero, e

$$p(p+3) + q(q+3) = n(n+3).$$

- 2. Trovare il più piccolo intero n tale che 3^{2003} divide $2^n + 1$.

 Determinare in generale la più grande potenza di 3 che divide un intero della forma $2^n + 1$.
- 3. Sia p un numero primo congruo a 2 modulo 3. Determinare quante sono le coppie di interi (x,y) tali che
 - 0 < x < p 1 = 0 < y < p 1;
 - p divide $y^2 x^3 1$.

Problemi dimostrativi (lavoro di gruppo)

4. Determinare il più piccolo n per cui esistono interi x_1, \ldots, x_n tali che

$$x_1^3 + x_2^3 + \ldots + x_n^3 = 2002^{2002}.$$

5. Sia m un intero positivo. Dimostrare che esistono m interi positivi consecutivi che non si possono scrivere nella forma

$$a^3 + b^5 + c^7 + d^9 + e^{11}$$
,

con a, b, c, d, e interi positivi.

- 6. Siano p_1, \ldots, p_n numeri primi distinti e maggiori o uguali a 5, e sia $z = p_1 \cdot \ldots \cdot p_n$. Dimostrare che $2^z + 1$ ha almeno 4^n divisori positivi.
- 7. Sia $k \geq 2$ e siano $n_1, n_2, \ldots, n_k \geq 1$ tali che

$$n_2|(2^{n_1}-1), \quad n_3|(2^{n_2}-1), \quad \cdots \quad , n_k|(2^{n_{k-1}}-1), \quad n_1|(2^{n_k}-1).$$

Dimostrare che $n_1 = n_2 = \ldots = n_k = 1$.

Team selection test

1. Determinare tutte le terne (a, b, p) in cui a e b sono interi positivi, p è un numero primo e

$$2^a + p^b = 19^a$$
.

2. Sia B un punto di una circonferenza S_1 . Sia A un punto (distinto da B) sulla tangente a S_1 in B. Sia C un punto esterno alla circonferenza e tale che il segmento AC interseca S_1 in due punti distinti (interni al segmento). Sia S_2 la circonferenza tangente in C alla retta AC e tangente a S_1 in un punto D, che sta dalla parte opposta di B rispetto alla retta AC. Sia infine O il circocentro del triangolo BCD.

Dimostrare che il punto O giace sulla circonferenza circoscritta al triangolo ABC.

3. Determinare tutte le funzioni $f: \mathbb{R} \to \mathbb{R}$ tali che

$$f(f(x) + y) = 2x + f(f(y) - x)$$

per ogni x e y reali.

- 4. In un triangolo ABC la circonferenza inscritta ha centro I ed è tangente ai lati AB, BC, CA, in D, E, F, rispettivamente. La parallela a DF passante per A incontra la parallela ad EF passante per C nel punto G.
 - (a) Dimostrare che il quadrilatero AICG è ciclico.
 - (b) Dimostrare che B, I, G sono allineati.
- 5. Sia n un intero positivo dispari. Una tabella formata da $n \times n$ quadratini unitari è colorata a scacchiera di bianco e nero, in modo che gli angoli siano neri. Un tromino è un pezzo costituito da tre quadratini unitari, ottenuto rimuovendo una casella ad un quadrato 2×2 .
 - (a) Determinare per quali n è possibile piazzare un certo numero di tromini sulla scacchiera (rispettando la quadrettatura) in maniera da non uscire dai bordi, evitare sovrapposizioni e ricoprire tutte le caselle nere.
 - (b) Per quei valori di *n* per cui risulta possibile, determinare il minimo numero di tromini necessari.
- 6. Sia p(x) un polinomio a coefficienti interi e sia n un intero. Supponiamo che esista un intero positivo k tale che $p^{(k)}(n) = n$, dove $p^{(k)}(x)$ è il polinomio ottenuto componendo p(x) con se stesso k volte.

Dimostrare che p(p(n)) = n.

Modalità di svolgimento della prova: 3 problemi al giorno con 4 ore e 30 minuti di tempo a disposizione.