
PreIMO 2017

Stampato integrale delle sessioni

Autori vari

Indice

Algebra Mattutina (Autori Misteriosi)	4
Algebra Pomeridiana (Autori Misteriosi)	16
Combinatoria Mattutina (Autori Misteriosi)	23
Combinatoria Pomeridiana (Autori Misteriosi)	32
Geometria Mattutina (Autori Misteriosi)	43
Geometria Pomeridiana (Autori Misteriosi)	50
Teoria dei Numeri Mattutina (Autori Misteriosi)	61
Teoria dei Numeri Pomeridiana (Autori Misteriosi)	70

$$Q_{1999} = C \cdot 1999 : 1998 + 2 \cdot 1998 = 0 \quad (2000)$$

$$= C \cdot (-1) \cdot (-2) + 2 \cdot (-2) = 0 \Rightarrow 2C = 4 \quad (2000)$$

$$= C \cdot (n(n-1) + 2(n-1) = 0 \quad (2000)$$

$$= (2n+2)(n-1) = 0 \quad (2n+2)(n-1)$$

$$Q(x) = \beta x^{3} + ...$$
 $P^{2} - PQ + Q^{2} = \chi^{2} x^{2} - \chi \beta x^{2} + \beta^{2} x^{3} + ...$
 $\chi^{2} - \chi \beta + \beta^{2} \neq 0$ par ogni $\chi, \beta \in \mathbb{R}$
 $P^{2} - PQ + Q^{2} = \chi^{3} - \chi^{4} + 1$
 $P^{2} - PQ + Q^{2} = \chi^{3} - \chi^{4} + 1$
 $PQ = \chi^{4}$
 $P = \chi^{3} = \chi^{2} = \chi^{4} =$

8 Preimo Pisa 2017
Altra Croccia. Se O a P(h)
Altra fraccia: Se Qn=P(h) per un cerlo Polinonio P(x) di grado de un, allora
$\sum_{N=0}^{\infty} Q_{N} \left(-1\right)^{N} \left(\frac{M}{N}\right) = 0$
(se P ha grado O, allore P(1)=P(0)=0
se P la grado = 1, allora P(2) - 2P(1)+P(0) = 0
Se Pha grado 52, alaa P(3)-3P(2)+3P(1)-P(0)=0
(->P(0) P(1) P(2) P(3) P(4) P(5)
P(1)-P(0) P(2)-P(1) P(3)-P(2) P(4)-P(3)
P(2)-2P(1)+P(0) P(3)-2P(2)+P(1) -
P(3)-BP(2)+BP(1)-P(0)
Europoniono (x) vare per M>M
Sopenso
Q 0 Q 1 Q 2 Q m-1
défermin Q m dolla (X) con m= m

Stampato integrale del			<u> </u>		
de fermin	Q vx + (dolla	(*)	on M	= m+1
,		τ .		1	
1	0			0	
=> esiste	us Sal	م تمارد	e ssigue	de	Soddi sfe
(x) per	WZ W	e la	volori	Mizieli	
					·
	20, 0,,5	21, ~.	· Qu	: -1	
Prendo :1 P(0)=	Dali ham	a	0.040	W	Lola clas
			graces		Vole che
7(0)-	20,1	(1)-Q,	, A	$\supset (m-1)$	- W m-1
(Interp	20 COL De	di (spreye		
	A				
Allone	valori	D ~:= '	P(n)		
sod di spero	D;= S	l: per	i= 0,1,	, m-1	
e (x)	per m	> 100			
	794 100	/ / / /			
M					
∑ 9 " (- \	(\mathcal{N})	= 0	m >	, w ,	
N=0					
- m.	m ,	an cm) = F) (x)	
m > 0	n=0 an $(-$	1) (n	/ = \		
M	1 - 0				
7 2 2	37(-1)	x m (M)		
m 2 0 1 = 0	9 V (- \1)	^ (n /		(5 , 5 -1)
	, , , n <	· . m /	\sim \sim \sim		(Snake Oil)
= 2 an	(-1) $m \ge 1$	_ X ((n)		
n≥o	1112			1.	1
		×^-/		1, D7	
		(1 - x	yn T.	n:	(/I- X)

$$x P(x) = \sum_{n \ge 0} a_n \left(-\frac{x}{1-x} \right)^n = Q(x)$$

$$y = \sum_{n \ge 0} a_n \left(\frac{x}{x+1} \right)^n = Q(x)$$

$$y = \frac{x}{x-1} \quad x = \frac{y}{y-1}$$

$$\sum_{n \ge 0} a_n y^n = Q\left(\frac{y}{y-1} \right)^n$$

$$= \sum_{i = 0} c_i (y^{i-1})^i = \sum_{i = 0} c_i (y^{i-1})^i$$

$$= \sum_{i = 0} \sum_{j \ge 0} c_i (-x)^i (y^{j+1} (j))$$

$$= \sum_{i = 0} y^{j+1} \sum_{i = 0} c_i (-x)^i (j)$$

$$= \sum_{j \ge 0} y^{j+1} \sum_{i = 0} c_i (-x)^i (j)$$

$$= \sum_{j \ge 0} y^{j+1} \sum_{i = 0} c_i (-x)^i (j)$$

$$= \sum_{j \ge 0} y^{j+1} \sum_{i = 0} c_i (-x)^i (j)$$

$$= \sum_{j \ge 0} y^{j+1} \sum_{i = 0} c_i (-x)^i (j)$$

$$= \sum_{j \ge 0} y^{j+1} \sum_{i = 0} c_i (-x)^i (j)$$

$$= \sum_{j \ge 0} y^{j+1} \sum_{i = 0} c_i (-x)^i (y^{j+1} (j))$$

$$= \sum_{j \ge 0} y^{j+1} \sum_{i = 0} c_i (-x)^i (y^{j+1} (j))$$

$$= \sum_{j \ge 0} y^{j+1} \sum_{i = 0} c_i (-x)^i (y^{j+1} (j))$$

$$= \sum_{j \ge 0} y^{j+1} \sum_{i = 0} c_i (-x)^i (y^{j+1} (j))$$

$$= \sum_{j \ge 0} y^{j+1} \sum_{i = 0} c_i (-x)^i (y^{j+1} (j))$$

$$= \sum_{j \ge 0} y^{j+1} \sum_{i = 0} c_i (-x)^i (y^{j+1} (j))$$

$$= \sum_{j \ge 0} y^{j+1} \sum_{i = 0} c_i (-x)^i (y^{j+1} (j))$$

$$= \sum_{j \ge 0} y^{j+1} \sum_{i = 0} c_i (-x)^i (y^{j+1} (j))$$

$$= \sum_{j \ge 0} y^{j+1} \sum_{i = 0} c_i (-x)^i (y^{j+1} (j))$$

$$= \sum_{j \ge 0} y^{j+1} \sum_{i = 0} c_i (-x)^i (y^{j+1} (j))$$

$$= \sum_{j \ge 0} y^{j+1} \sum_{j \ge 0} c_i (-x)^i (y^{j+1} (j))$$

$$= \sum_{j \ge 0} y^{j+1} \sum_{j \ge 0} c_i (-x)^i (y^{j+1} (j))$$

$$= \sum_{j \ge 0} y^{j+1} \sum_{j \ge 0} c_i (-x)^i (y^{j+1} (j))$$

$$= \sum_{j \ge 0} y^{j+1} \sum_{j \ge 0} c_i (-x)^i (y^{j+1} (j))$$

$$= \sum_{j \ge 0} y^{j+1} \sum_{j \ge 0} c_i (-x)^i (y^{j+1} (j))$$

$$= \sum_{j \ge 0} y^{j+1} \sum_{j \ge 0} c_i (-x)^i (y^{j+1} (j))$$

$$= \sum_{j \ge 0} y^{j+1} \sum_{j \ge 0} c_i (-x)^i (y^{j+1} (j))$$

$$= \sum_{j \ge 0} y^{j+1} \sum_{j \ge 0} c_i (-x)^i (y^{j+1} (j)$$

$$= \sum_{j \ge 0} y^{j+1} \sum_{j \ge 0} c_i (-x)^i (y^{j+1} (j)$$

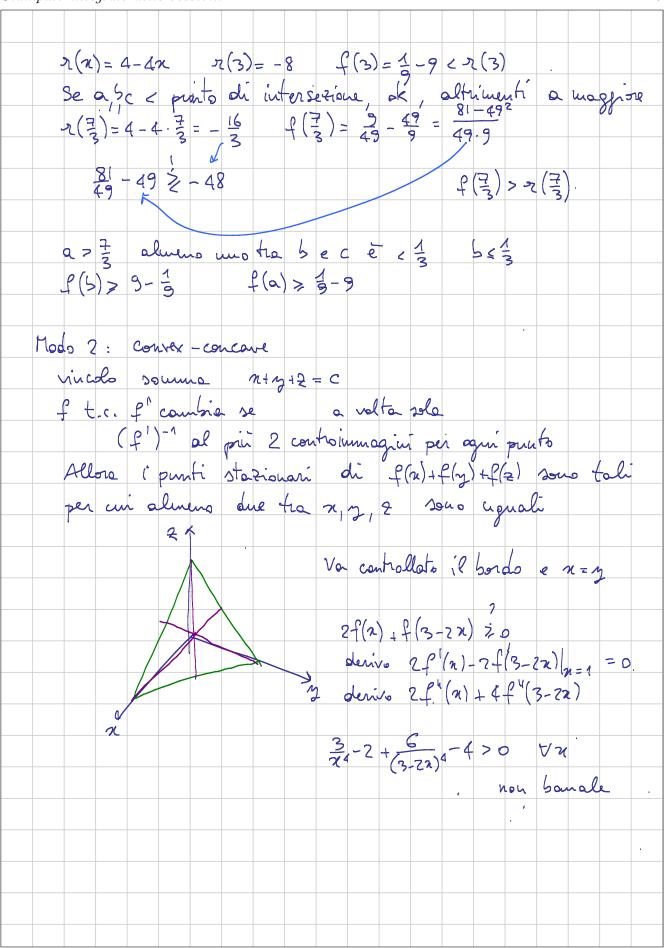
$$= \sum_{j \ge 0} y^{j+1} \sum_{j \ge 0} c_i (-x)^i (y^{j+1} (j)$$

$$= \sum_{j \ge 0} y^{j+1} \sum_{j \ge 0} c_i (-x)^i (y^{j+1} (j)$$

$$= \sum_{j \ge 0} y^{j+1} \sum_{j \ge 0} c_i (-x)^i (y^{j+1} (j)$$

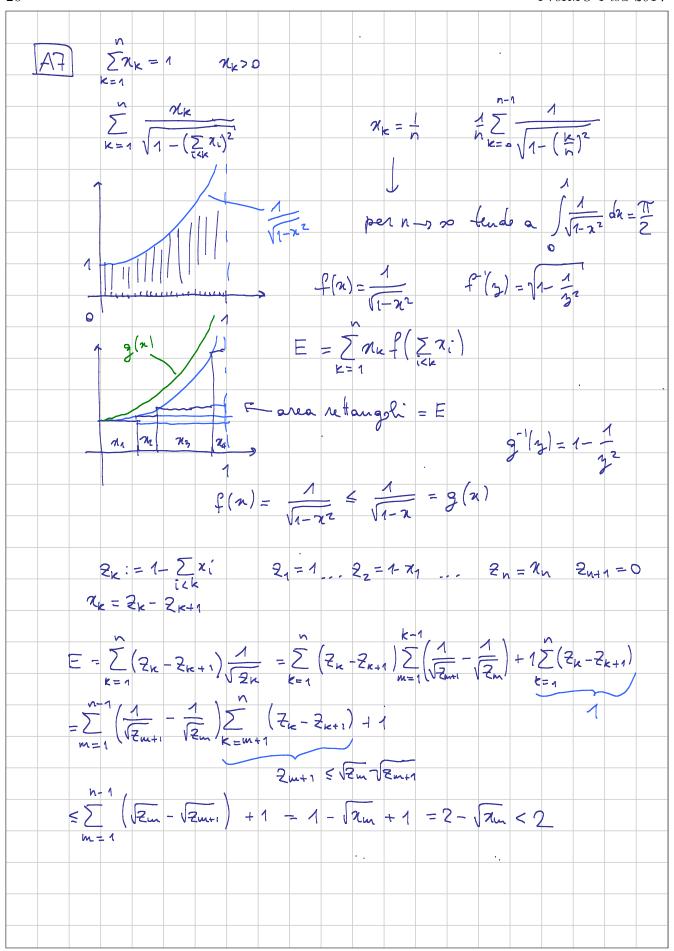
$$= \sum_{j \ge 0} y^{j+1} \sum_{j \ge 0} c_i (-x)^i (y^{j+1} (j)$$

Provo i casi procedi:
$$d=deg(P)$$
 $d=0$ P correcte. $P=0$
 $na=0$ Q = $a=0$
 $a=1$
 $a=0$ P poli queluque

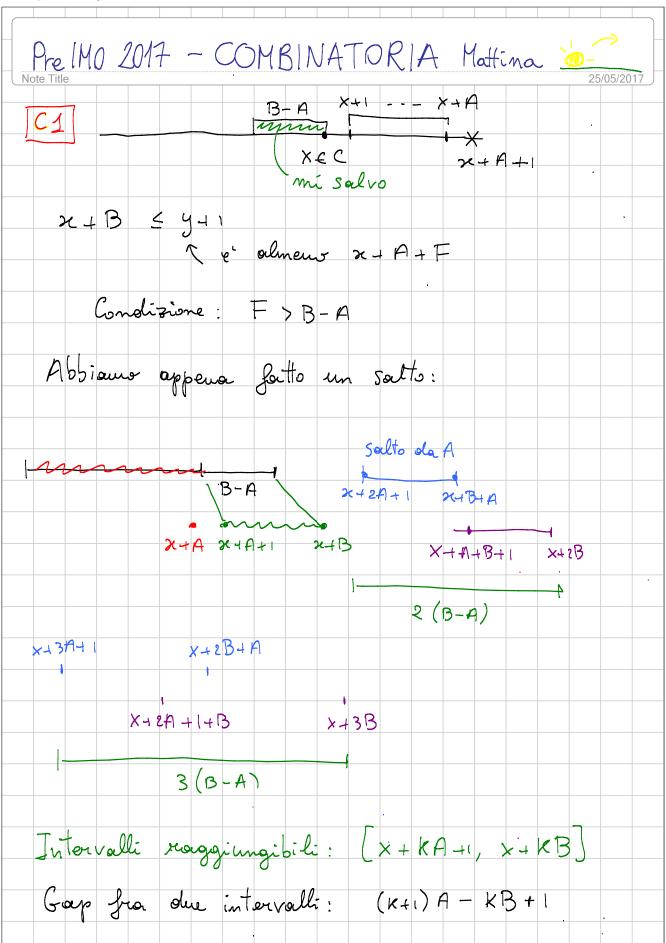

 $a=0$ $a=1$
 $a=0$ P poli queluque

 $a=0$ $a=1$
 $a=0$ $a=1$
 $a=0$ $a=0$
 $a=0$ $a=1$
 $a=0$ $a=0$
 $a=0$
 $a=0$
 $a=0$
 $a=0$
 $a=0$
 $a=0$
 $a=1$
 $a=0$
 $a=$

$$\frac{c(\frac{1}{3}n^{3}+0n^{7}+0n^$$


Stampato integrale d	telle sessioni				15
Vers	come is	entité t	re polinan	ni in n	
(N=-1)=	=0 P(-	-1)=2	P(-1)	=0 P(-1)=	0
				=> P(1)=	0
Mi dice	che ;	poliva	ni che	Cerco	
				· P · · · ·	
p(n) = d ((N+1) (h-	1) (gin +			
		Q=			

ALGÉBRA Note Title	PREIMO	2017.	POMER 1GG10	4/05/2017
A5 a,5,c>0	a+6+C	= 3		
$\sum_{\text{cyc}} \frac{1}{\alpha^2} \ge \sum_{\text{cyc}} \alpha^2$				
Ourgeneizzo Z	$\left(\frac{1}{0^2} - 0^2\right) - \frac{1}{0}$	$= \sum \frac{1-\alpha^4}{\alpha^2} =$	3-42 (2+5+c)4-(3a)4
Posso tentare Bur	iching + St	hur facen	do tati i conti	
3-4-1 Z (Q+	5+()4-(5	3a)4]b2c2	> 0	
f(ab,e) = g(s,q) s = a+b+C	p) = 9, (<	s,9) + g2(s,9)	7 7	
9 = ab + bc + c	9 /		2 6	
			P.	
$f(x) = \frac{1}{x^2} - x^2$	Zf(a	0 < 1		
	Se	force converse	1 : 1 Z-((a) > p(a+b)	+c)=f(1) = 0
0	> f(x	$() = -2x^{-3} - 27$ $() = 6x^{-4} - 2$	f"(n,)=0 n,=4	3
			per $\chi \in [0,3]$ e	ረ
	· Z f(a):	> Z x (a) = Z (m	2+9) = m(a+5+1)+39=1	3-7(1)=0

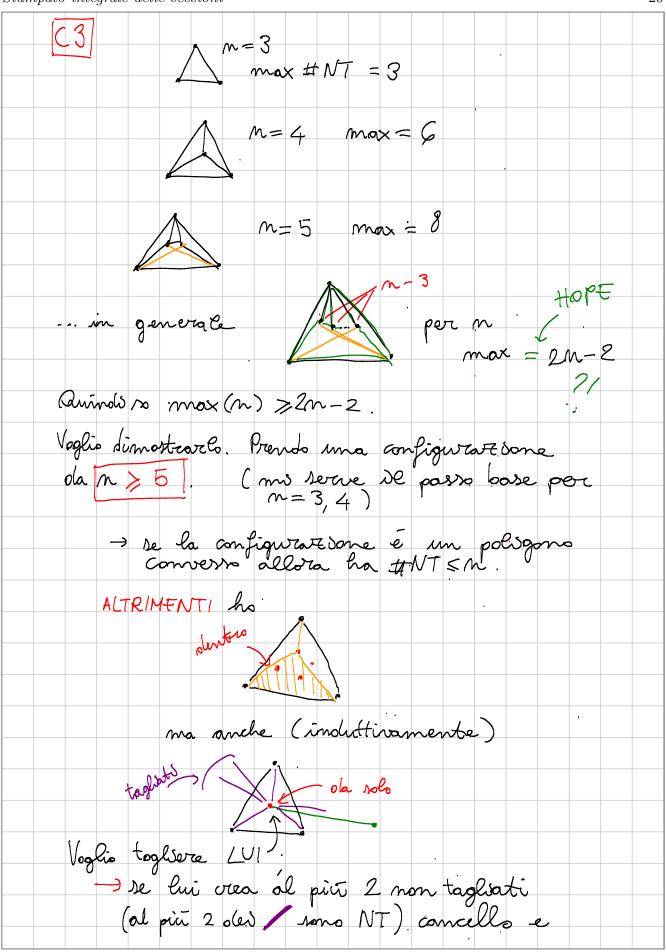

10	TTEIMOT isa 2017
	5
$\sum \frac{1}{3^2} \ge \sum 3^2$	
6	2
$\sum a^2b^2 \geq .\sum a^4b^2c^2$	
$(a+b+c)^4 = \sum_{c} a^4 + 6 \sum_{c} a^2b^2 + 12 \sum_{c} a^2$	2 bc + 4 \(\frac{1}{2}\)3b
C C C	5
2[6,2,0] + 13[4,2,2] + 6[4,4,0] + 20[2 2 7
	ן כן
+ 24[4,3,1] + 8[5,3,0] + 8[5,2,1]	\geq 81 [4,2,2]
[6,2,0] + 4 [5,3,0] + 4 [5,2,1] + 3 [4,	4,0]
+ 12 [4,3,1] + 10 [3,3,2] = 34 [4,	7.27
$\sum_{s} a^3b^3c^2 + \sum_{s} a^5b^1c^2$	
≥ 2 $\Rightarrow 4$ $\Rightarrow 2$ $\Rightarrow 5$	
$\sum_{s} a^{6} b^{2} + 2 \sum_{s} a^{3} b^{3} c^{2}$	
5	
$\geqslant 3 \geq 3^4 \cdot 5^{8/3} \cdot 4/3$	
23524b ² c ²	

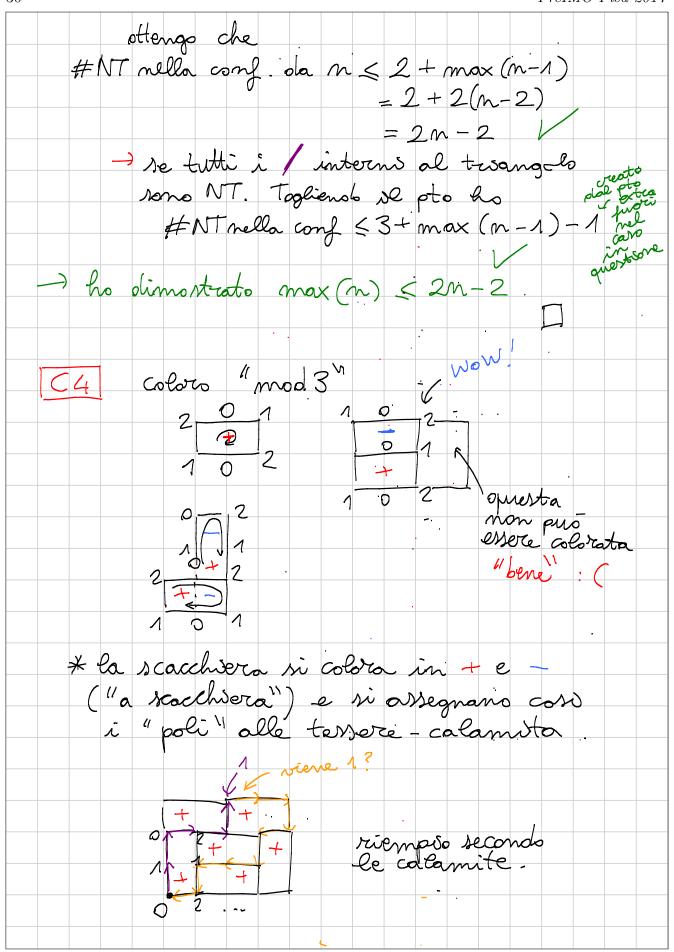
[AG] f: R.	$+ \rightarrow \mathbb{R}$			
	2) E - P(x+1) 2	<u>f(n)</u> + f	(2) 2 (2+3) 2 2+ 2	
		3(x) + 23(y)	< 1/2 g(n+y)	g(n)+g(z) ~ g(n+z)
nty g/n	1) + 2 3 (2) 5 1 2	g(n+z) <	1 2 9 (2) + 1 2 9 (2	>
n-y (g	$(n)-g(n))\leq 0$, 9	non cresente	
n=y	2g(x) = g(2)	n) g(;	$2^{n}x) = 2^{n}g(x)$ me è non cres	$n \in \mathbb{Z}$ cente, $g(\pi) \le 0$
N-2 2 = \(\sum_{14A} \)	A S {		$S = \sum_{i \neq j} z^{i}$	
2mg(1) = g(2m+1)) = 9(3-5) < 9(3)+	3(5) = g(\(\int_{\text{\sigma}}^{\cdot\) + g	(Z2i+1)≤Z2'g(-	1)=yg(1)+yg(1)=2"g/1
9(2)-2	9 (1)	Σ g (z ⁱ)	Σg(2 ⁱ)+g(1)	
	nan $y = Z z^i$,n } = S
	7m = Z 2			yn = y = y m + 2 m
	= g (zn+zm) <= ymg(1)	< ng (1)	+ 3 m g (1) < 2 m	g (1)
(3+2m)g(1) ≤ (1) (1) (1) (1)	zur ^{2m})g(1) = g(zur g(1) (≤ 2 ^m g(1)	2") ≤ g(z) < g(z tm m	m)=ymg(1)≤(_n-00	<u>1</u> -2 ^m) g (1)

A8		-]:	R -2	R														
)	(a) f	(n) < 1	1	∀n											
					$\in \mathbb{R}$													
				'														
		,	f(2	f(z	,)) + ,	5-f(a):	n	(2)	+ }	(23)						
			'	Î							1		=0		0 =	zf	(0)	
														(0)				
						1					1	4=	1	f(n	f(1)) = x	f(1))
												f(1) = 0) of	pure	ie	limit	ate
		α	= 1		t(t	(2)	+ 0	= .	fly	1+2	P(z)	= 0	46	رد)				
					P(16(7	(3)))	= 2	"fi	(z)		-	= >	f (2) <	o \	3
					P(F					_			,			
2+0	χ	1		4'(,	xf(1))-	+ \$(1 f	(n)	<u>-</u> 9			nul	hî e	utra	mbi		
					9			9										
				0/	£(2)	1												
	n.	= 0	=>	4 (£(2)	/=	0											
			<u> </u>		0(1		01			0.0				
	Je	3	e +	٠	\$(,	<i>= ا</i> لح	0		0	11	17(2	() =	0 1	. 4 (xy.			
+	0			0						0/-1								
-	1= 5) e	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	olu.	7) Je	ND	N	; f	(12)<	. 0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						
	-61-	١																
	71	·) >	0			fo	n)2		P(P	(21)	-0	9/2	()					
						1	x	= .	T (T	(1)		0,2	2/					
∀n:f	Y.A								-	(~)	_	, ,				ihin		

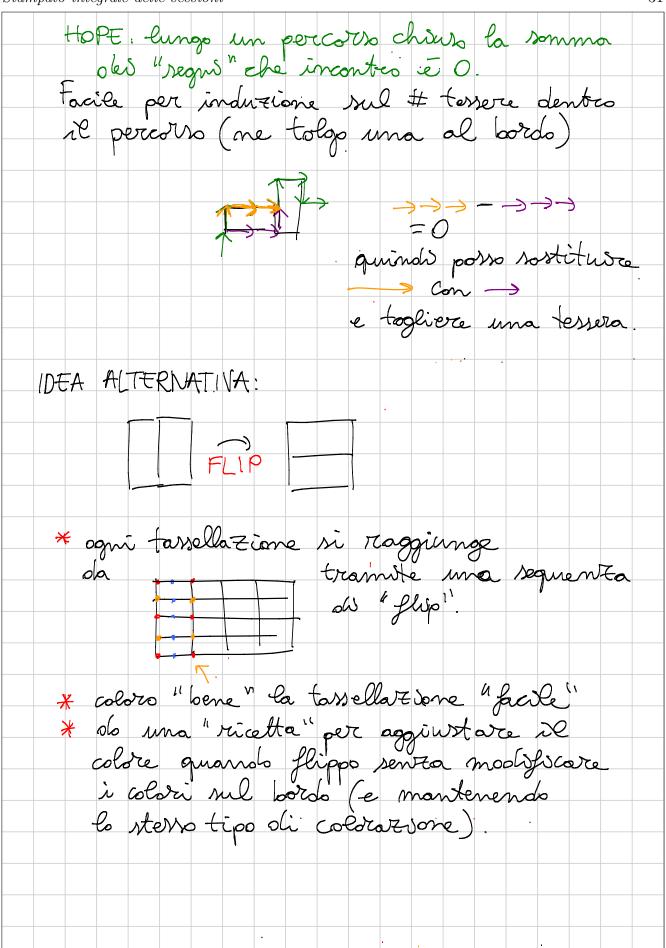
N	: 4	(n)	و =	-	=) 2c	2 S		¥	x <	0	P(pr)= 8	<u> </u>			
1.1	0-		111													
_	ugi	م				01	,									
Du	ب	200	utis	, ui	;	4(2	() ≥	9								
						£(1	k) =	mi	(0	,22	.)					
						,				/						

S	و	روا	est	ی	ہ ر	3	< 3			را أ	nte	×V	alli	K	·- 6	? รู้ น	~O	و
	il	()	۲+۱`) –	e 5	iluu	, 5	-) - 1	at	191. C	can	1 0		•			no a	
			. ,	,														
I	L	mi	niu	no	K	Ы	yr.	e	ىت	Suc	درو	le	ec					
					K (1	ι)	A	<u> </u>	KB)							
						A	<u> </u>	K	(B	- P)				,			
							K >				7							
									B-									
Mi	Sα	lvo	9	l	p	105	Siu	ص	Se	ult.	,	se.						
					,													
				K	+	<u>+</u> B-	1 A	A	+1	5	: (1 -	(B	- F	۱) .	+ 1		
				ſ					1		, -					\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
				p	vein	w	pu	utc)	0		in	rizi	ی و	rlel	_		
				رصد	d;	y ر	Jel		que	و		P	ros. erv	sim.	ه د ما	٤-		
				- 1	00 SS	0 \ 1.	رزی زا	لهيو	2				Sali					
						tri	MS											
				70	re	. Ī		1	_			_	\					
) -	ン	_	(>))		-A	#	1	- (B-	A)					
				<i>+</i> \-	7 F		'\	ïω	po	ng	י כ	9 لوه	wtoc					
(()		Ļ			<u> </u>	۔ مو		~ () -	1			Τ,	Δ_	<u>h</u>	((B)	24	γ
Ψ	lles	(0	O.	ĸω	100 H	JU9		О	<u></u>	_		1 6	-A) / (+ ((0 -	2/1/	
	ne v	_ a .	7.	376	\D \Q_{\alpha}	14	(na	ا2 حد	tro	بو.	c	L.	F -	. /	n	-20-a	fu	.7.
	,550	-	•	- ' '	- y'	-50					-		1	'	, ,		Jul	المناور (
	*	ヤノ	(eu	do	+	itt		c L	buc	hi	٥	li.	lun	gh	とそを	2 0	F -	. (
		}						2								_	-	•
-	/	W	A	4	- h	B	<u>.</u>		W	1 /	\	<u>ر</u>	B					
1	•			1									, , ,					

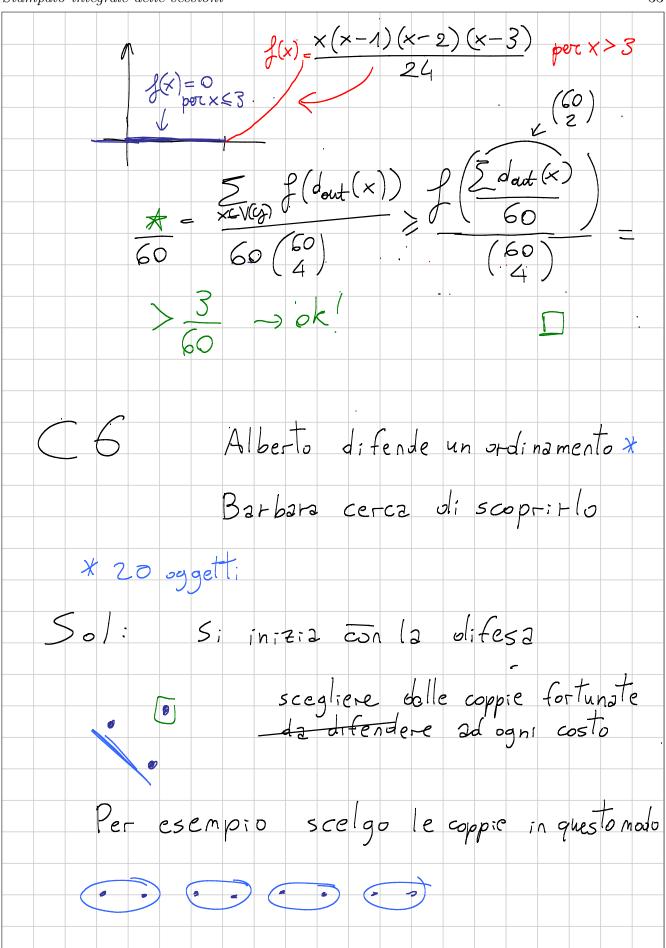

			79,400	1		sioni	'													_
										_ \										
				•	C	rss		(1	Δ,	3)	=	1								
				•		m -	m)	A	=	(n	′ –	n)	B						
							_		,						_					-
						•	/)		h		n	5	0	(4	(<i>)</i>					+
									12	1 -	m	>,	A							+
		_				,			,										00	+
	*	F	d	0	gui	. b	لدك	,	ኤ	per	rde	- 19	elw	eco	u	na	C	ocsie	lla	
																•	,			+
																				+
																				+
																				+
																				-
																				ł
																				ł
																				ł
																				t
																				t
																				t
																				t
																				T
T																				T


Sessione: Combinatoria Mattutina

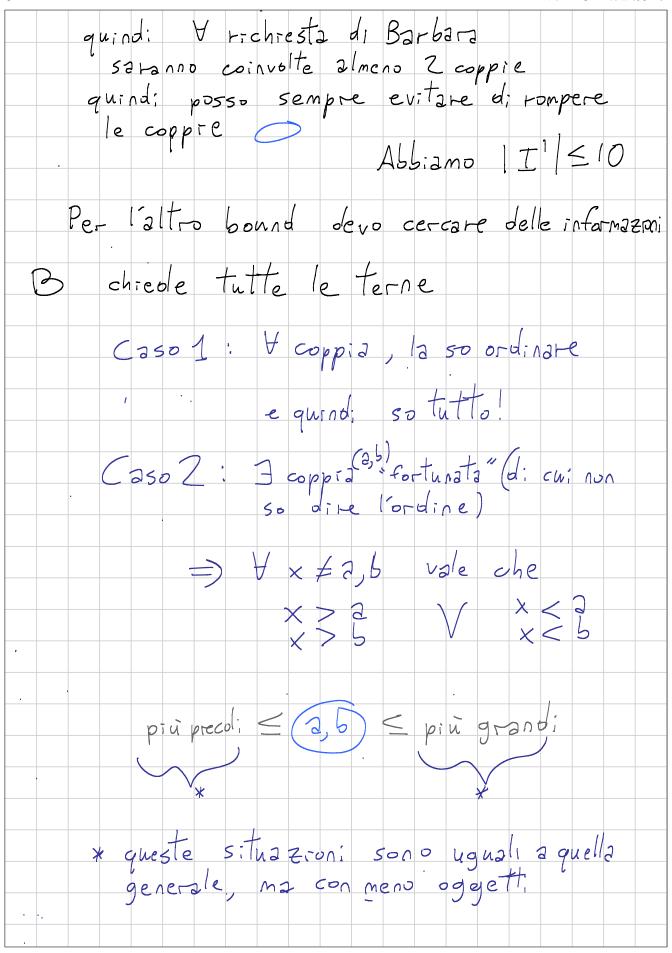
	: una bi			ordinate, (K, l)
LEMMA E	, j f n {k, l }	MOVI B	= { }4,,,	
	() e' or s G " he			
Vogliamo gli piec	e, in moo	od og lo che	ni je; eur cagazzi di	io g-che :vers sposius
CONDIZIONI ALMEN	E! Com	inque scel	to K deap	li Mi esistano l AlHEMO
Nel nostre	o Caso,		;;) i<;}	
Sioner re	i,, eque	€ B.		•

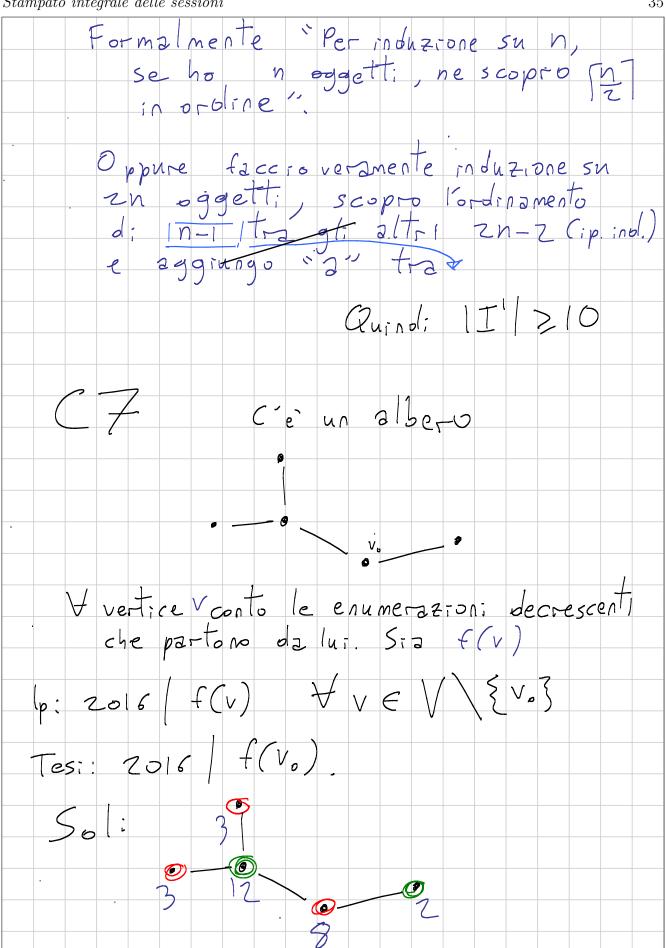

Caso 1:	non ci	Sono 2	elevienti	i, j tali ch
	oppia cont			
Ogni c	oppie in che abbi	G va	bene, poerc	he non econ
Caso 2:				
	orze che			
	no (n-1			
Basta	(m-1) (m-	2) > (n.	2 piu m-1	er nz4
Caso 3;				
				cosa che
(3.4)	-ccederce e			
Chiorame (ute almen (3,4); (4	y 3 year, 1); (2,4	gazze van	nno beue.

Sessione: Combinatoria Mattutina

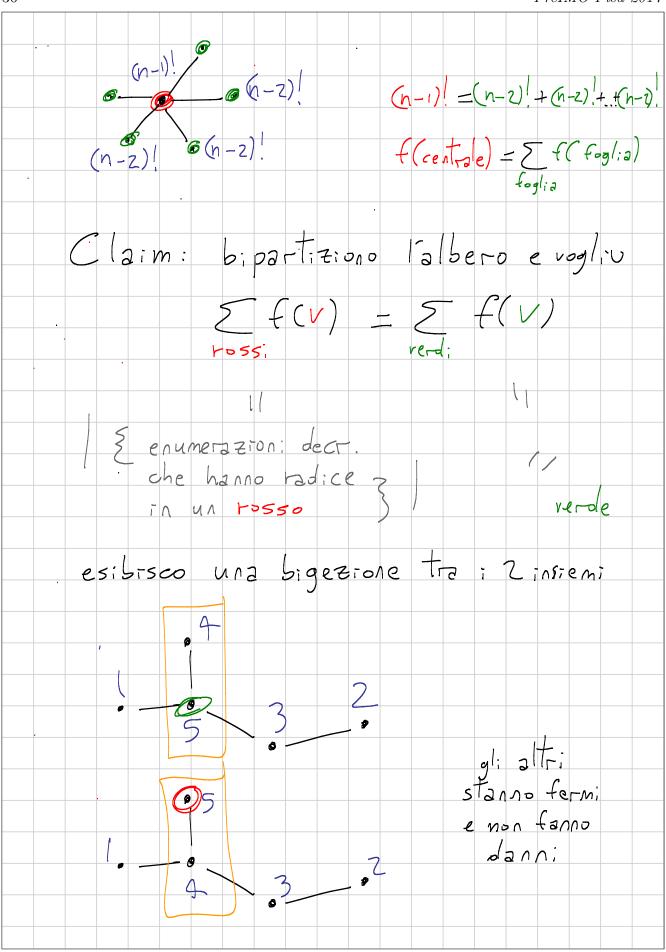


Sessione: Combinatoria Mattutina

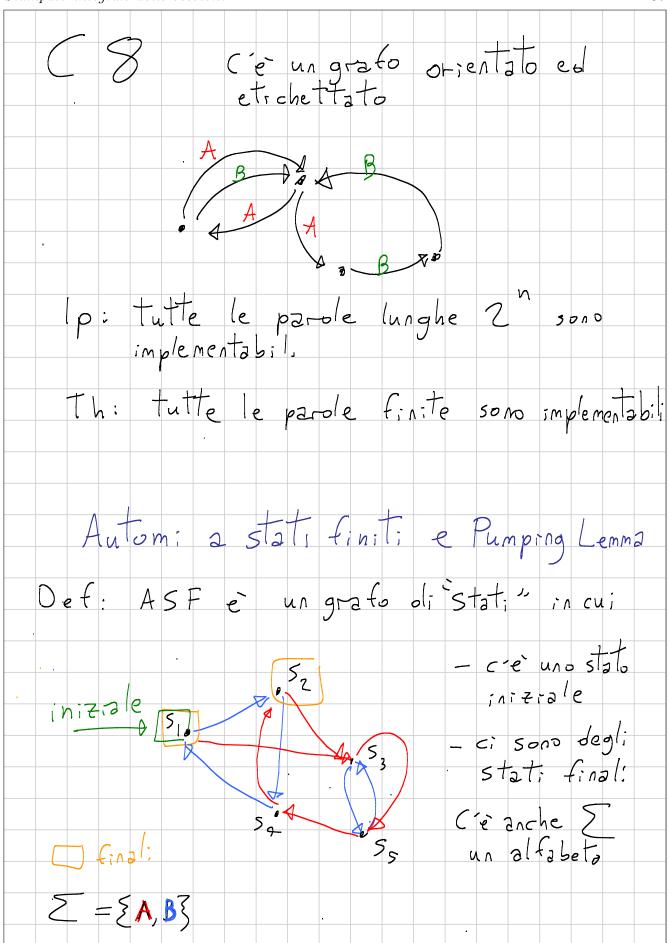



Pre Mo 2017 -	- COMBINA	TORIA Pomo	eriggio
[C5] A, B	$A \cap B = \phi$	t. c. ",	1 3 8 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °
-) quan	te quadrup	oe? (60 4)	60.59.58.57 = 24
-) obco Q se	che $x \in V(g)$) copre un	a quadrupla
	×	€. Q	
t=51:	posso trovara coprano la. Oge querti	4 éléments quadrupla	Soli V(y) B
	de querte?		
	(G) copre		
Ma Ev(g)	(dout (x))	3 quinds	
***	60)		
	51.		(60)
L	5 x \in V(g) dowt (x)		(2)
Applico Jense	n m que	esta funtie	me

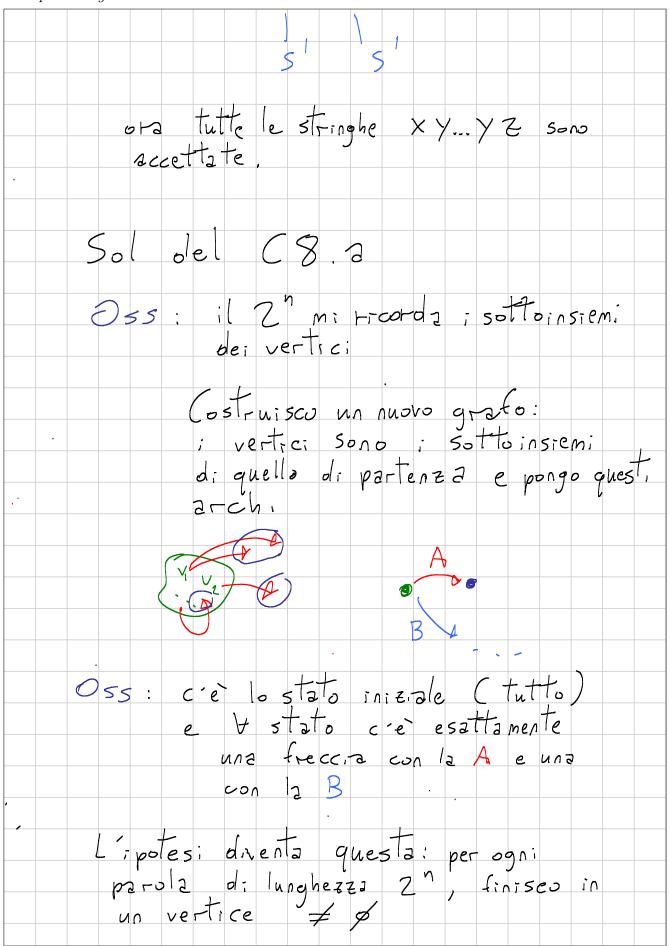
Sessione: Combinatoria Pomeridiana



Sessione: Combinatoria Pomeridiana

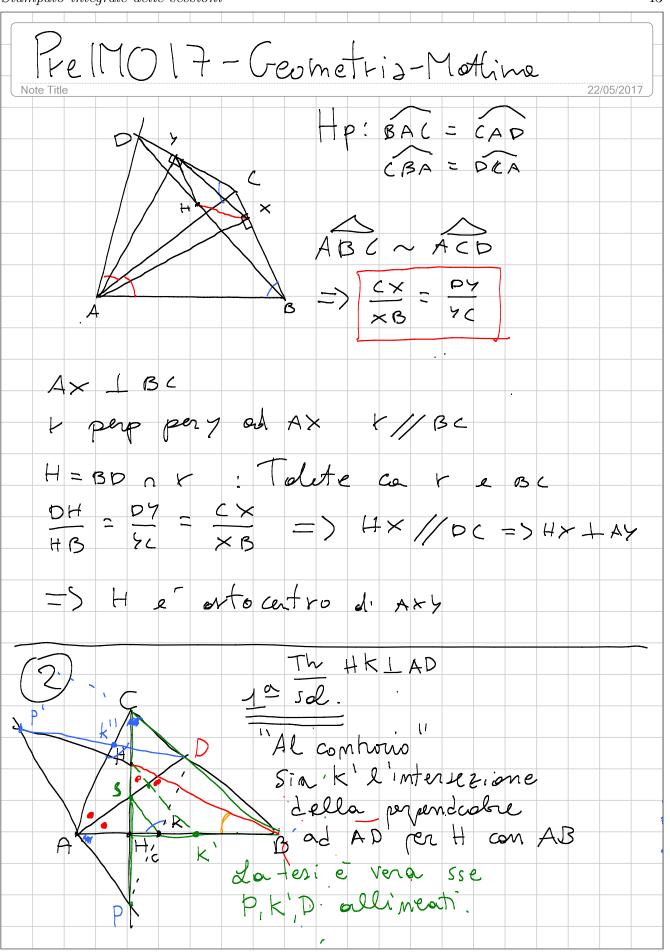


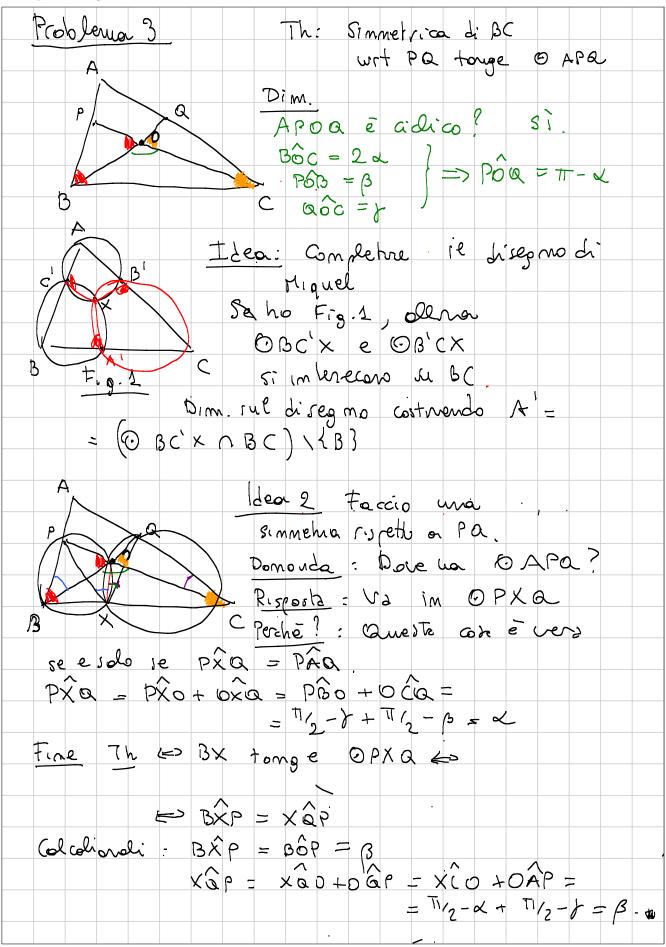
Sessione: Combinatoria Pomeridiana

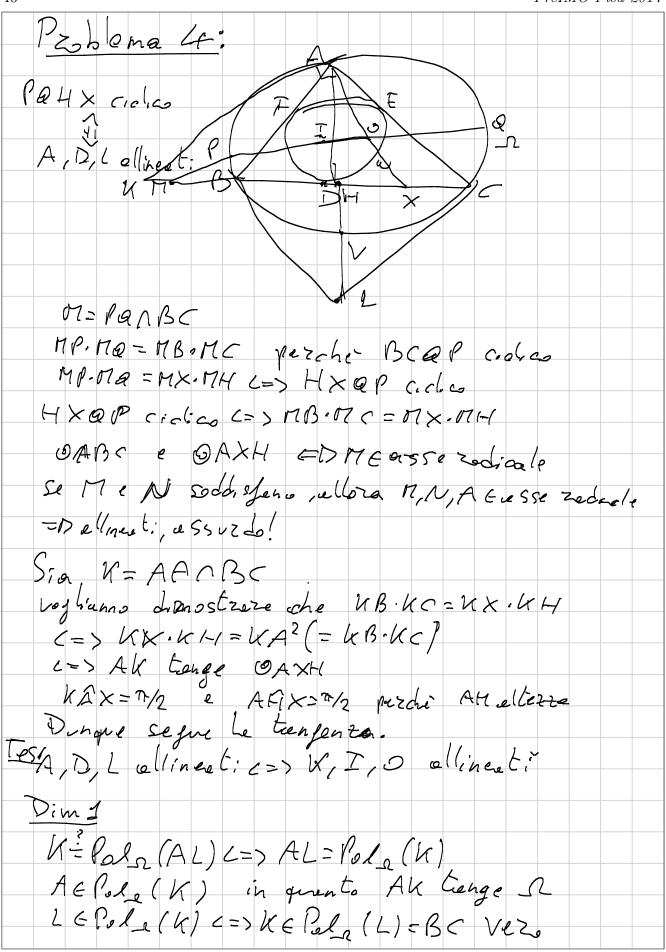


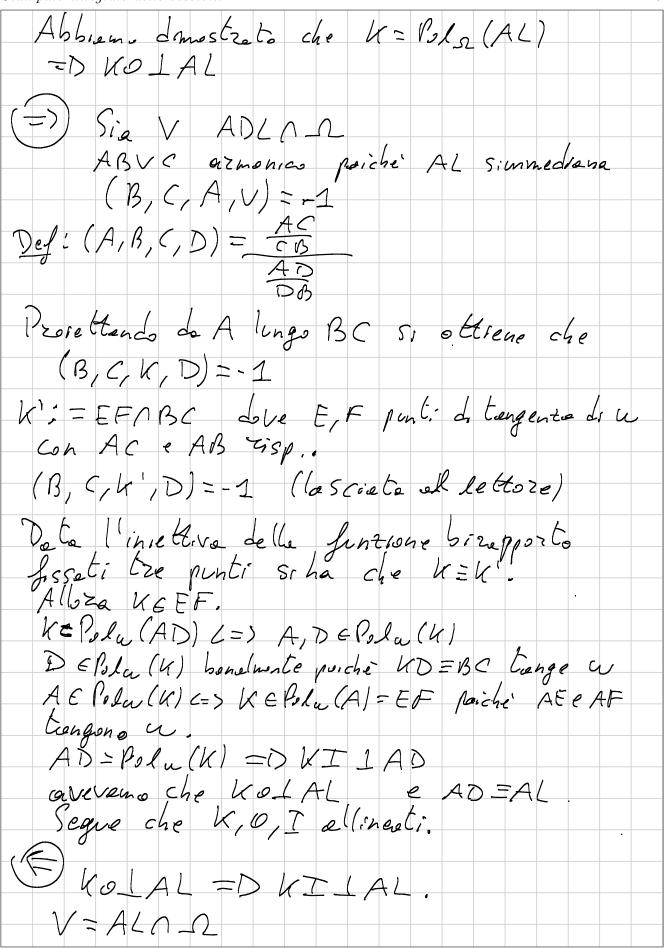
Sessione: Combinatoria Pomeridiana

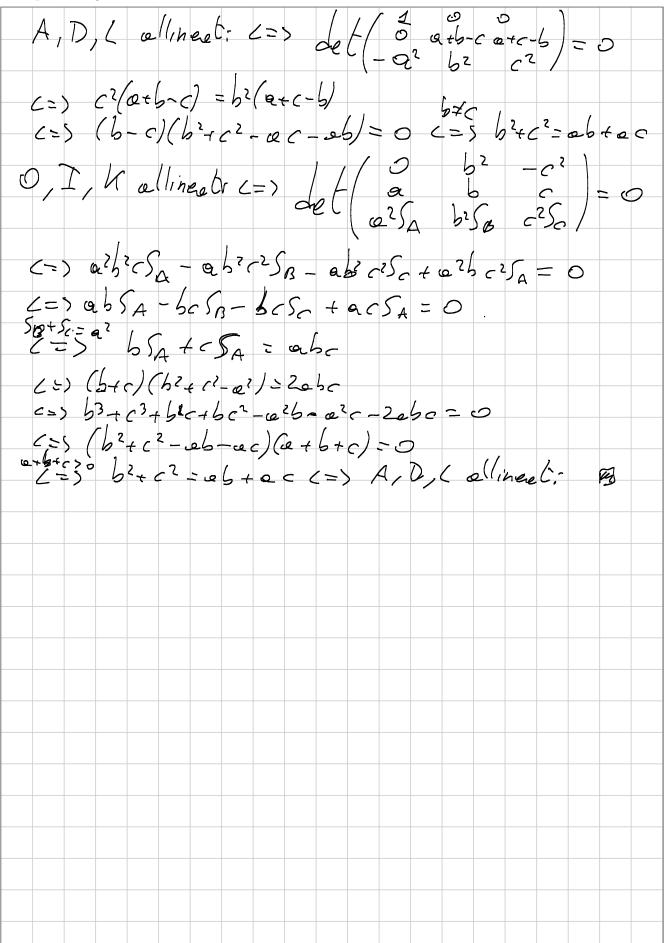
Sessione: Combinatoria Pomeridiana

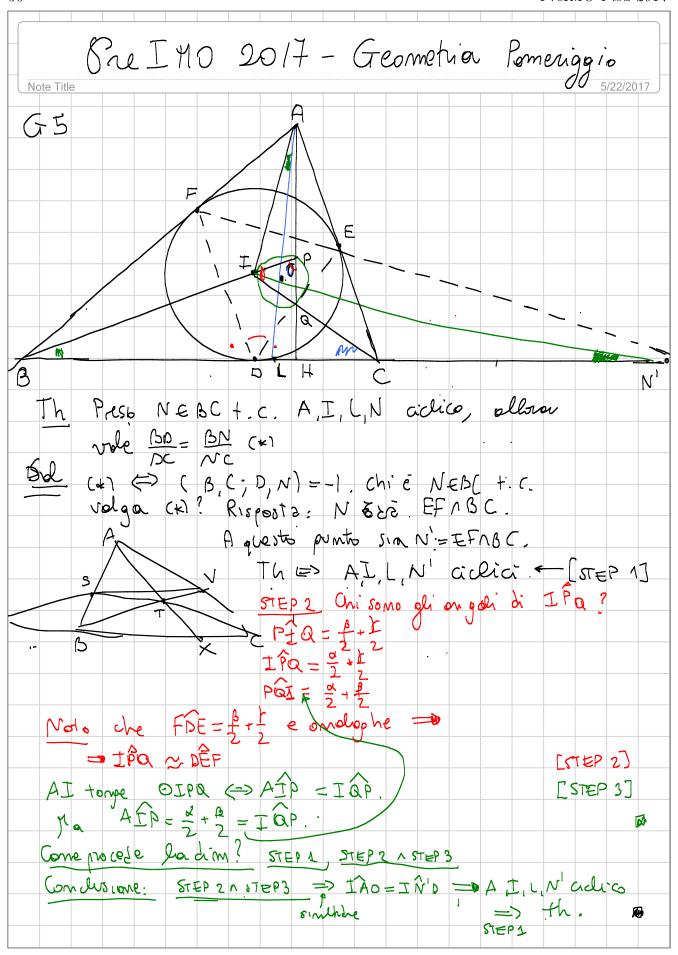

38							1 1611	10 Pisa 2017
· e	F	: 5 >	ζ		5	e "		
	'	unz p so car					S of o dr	stat;
	S in i	ppon: 2m lunghez	o che	. ci s	572	w u		
			non Y	e la	2 par nghe	ola nu zza s	.lla . (s +	,
		accett : Per- lette sta qu; nd:						1 -esima tesso
		qu; nd:	div:			~ que:	sto mo	50

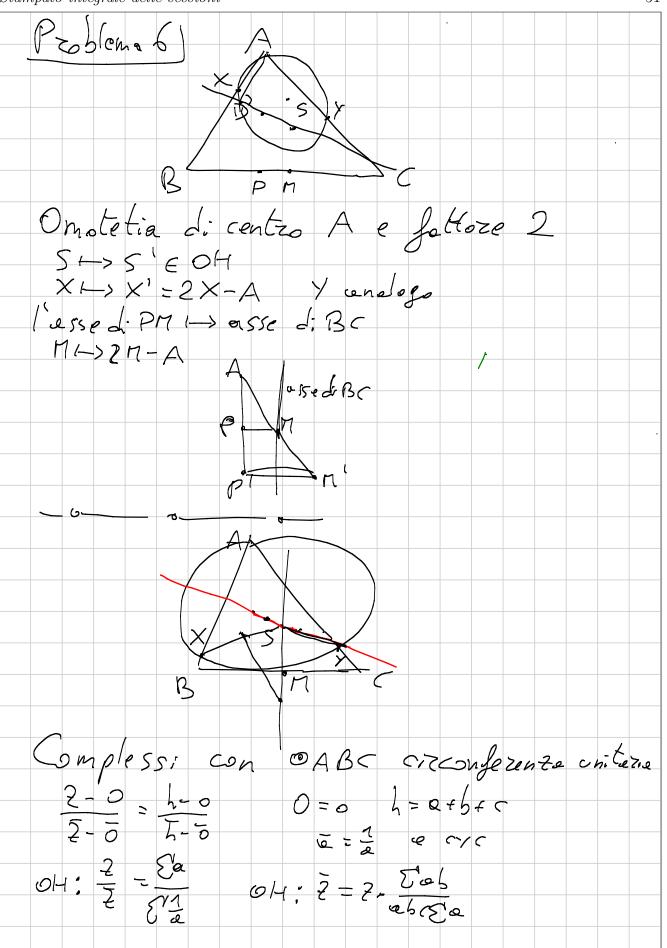

10	1 TeTMO 1 tsu 2017
1 mado:	mostro la tesi per induzione sulla
	lunghezza della parola
	e seguo un ragionamento come prima.
·	
2º modo:	Définisco l'ASF con il grafo
0	li prima dove stuttos è lo stato
i	niziale, & e l'unico stato non
	tingle una parola lunga kti si sperza
	3 part: e posso levare quella intermedia
	- ottenerne una valida.
70 /	
3 modo:	Per assurdo
C8.5	Qui il grafo è non diretto
	ma la lunghezza che conosco
	e solo 2n.
5.1:	
055, n	on è vero che
	a AA JII J
	mple mentabili, altrimenti
	ce A lo è, torno indietro

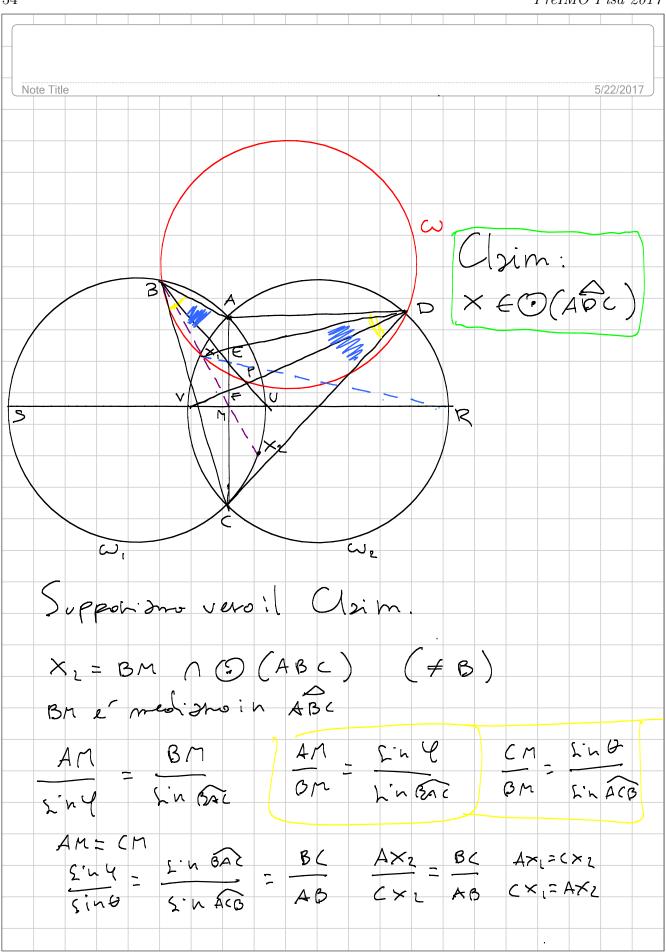

Dianipalo	integrati	e aeue ses	swit						41
		9	1 penuit	วั <i>ท</i> อ	vertic	re e	otter	190 a	AA
	05							una delle	
		C	orte v	gon i	mplem	enta b	(1;		
	5	pero	che	52p	er f	2 re + ++	ABAB	J. AB	
		711	70511	Per	1 a pe	1000			
	055	: es	istono) de	; 9,5	af;	facili	Coni	qua ;
		imk	plemen	to 7	utto	;			
			•		•				
		Se	ho (11 S	ottog	rafo	pe-	cui ba	og n1
		su o del	tipo	A	o B	o de	1, 210	con pas mple me	1551 100
		Tull	e le	pan	ole.	,		Ŋ	
	Dra	pre	ndiam	0 1-	para	,la ((AB)	=AB	AB volte
	3 de 550	055	ervo verti	che	vedo	3,	rolte	(almeno	,)
	10 5	12350	Verti	26	Cpig	Co/1 h	61e)		
•	А	BAB	AB.	_		A B/A	B		
		. R	18.			> V			
			3 vol	He 1.	stes	50			

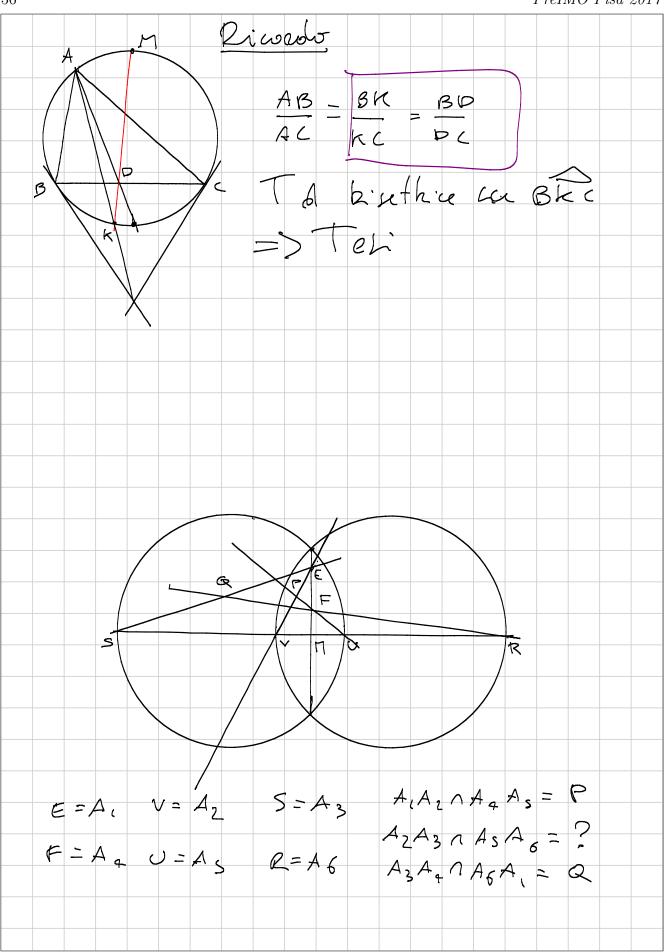


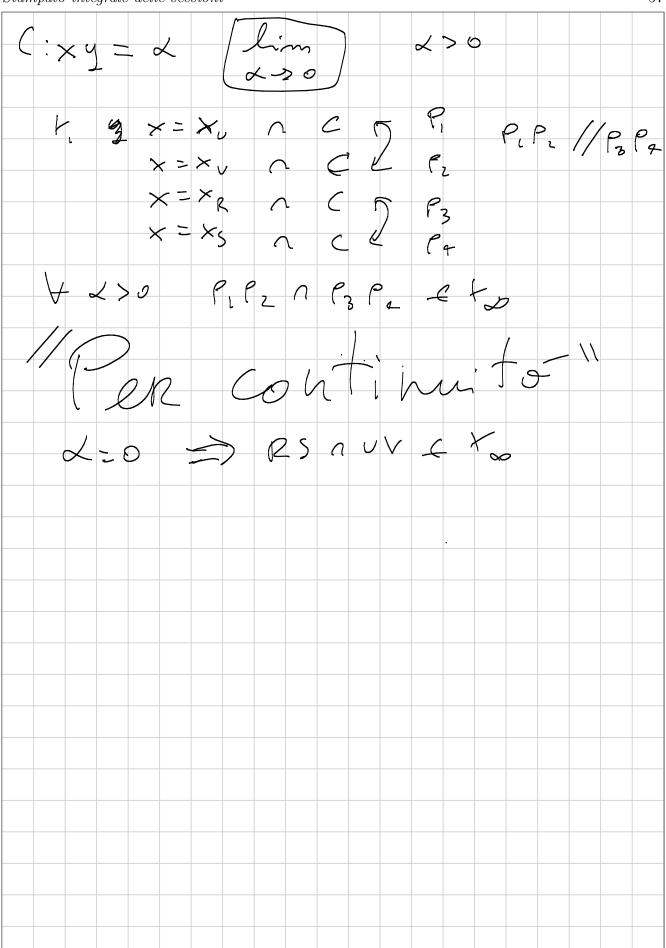

44	PreimO	Pisa 2017
Per dimostore una cosa del genere.		
Menelro su CHCB		
Scriviano : rapporti		
CP = AP]		
PHC Sin(dxy) AP cosa (-)	<u> </u>	INB
	PHC Ring	Most
th bisettie Sing teni. AP		
DC AC sui Sing		
$ \mathcal{H}^{-}K', \mathcal{H}^{-}M$		
, 20,84166	1	
Osseno Hothk'= = = & Poiche HothB=		
ollowa k HB = = = = = = = = = = = = = = = = = =		
Infine CP. BD. Hold SINK.	coノベ -	1
12C 13 SIUL (070 21/2)		
dea 2 HKLAD (=> Hortocendo di ASK	(C)	
(=> Sk/BC (=> PK = PS PC PC	包	
Idea 3 Sinnetime la confipmentione! Sia p'interretore di B4 con AP Sia k'' = p'pnAC		
Sia p'interretore d' B4 con AP		
Sia k"= Po'pnAC		
Por Pappo k"Hk ellineadi Voplio de k" k I AD e per probo borta de Ak" D = ARD a snoot		
roplin de k'k L AD e per pro		
bonta cre ARID = ARD a supo	2, 4	(A)
bonta de AR"D = ARD a supo é	kuse	

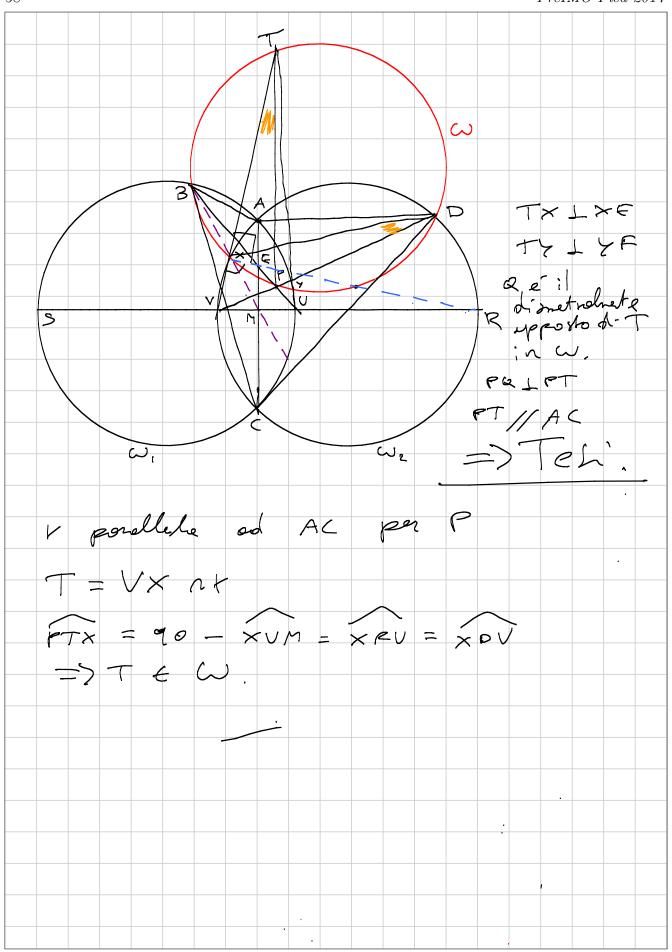


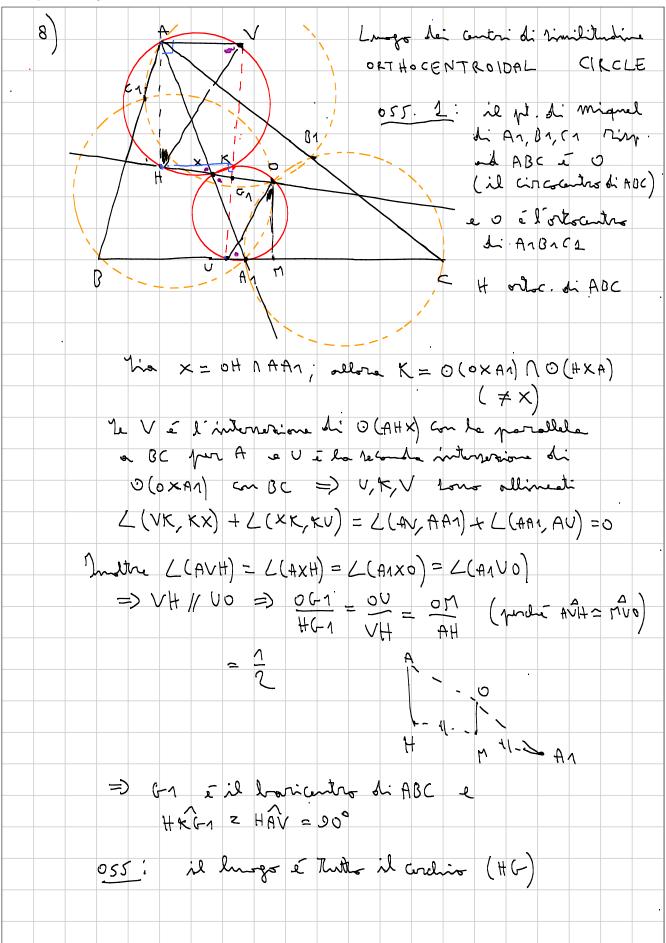


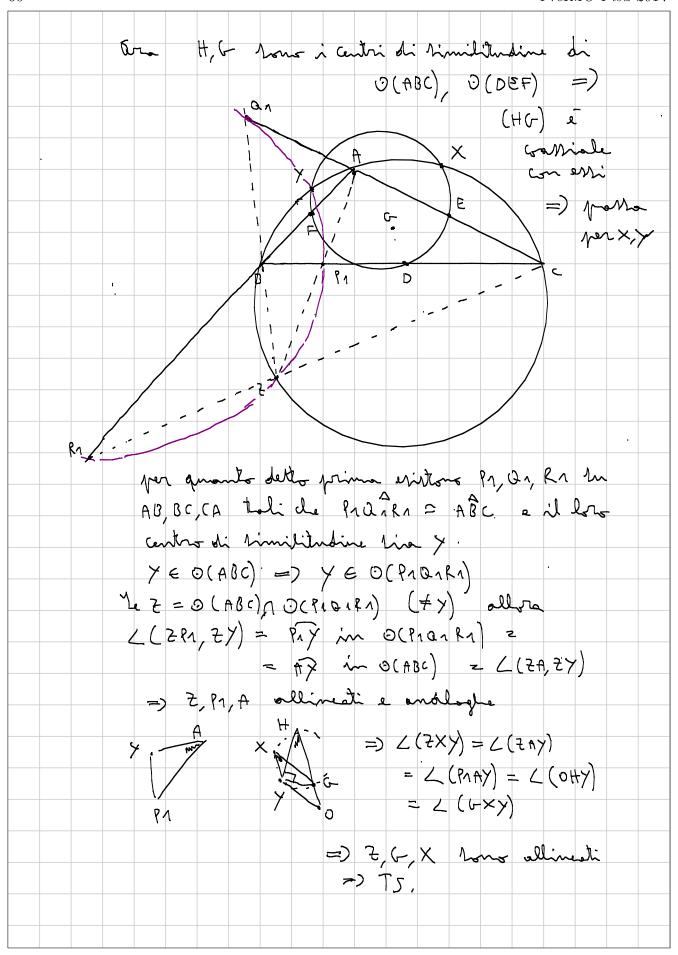

(B,C,A,V)=-1 == B(AB,AC,AK,AL)=-1 Supponvamo per assizés che u non sia il polo di Al respetto ced u. Sia u'= Polo (AL). WIJAL, I centro dra =D K'EKT Ora varafronamo che K'EF. EF = Pola (A). Pero A E Pola (K') = D WE Pola (A) TD KIECF Allora (AF, AE, AK', AL) = -1 Sempre per l'injettirité delle fentione birepporto frsseti 3 æglornenti, si he All =All =DU'= K =DV = Pola (AL) C=> AL = Pola (K) UD trange a DE Pola (K) DEAL =D A, D, Callineat. Ru Dim 2: Coordinate borrentriche con riferimento ABC BC=0 AC=b AB=C 62+12-02=SA e CYC D=(0, 2+6-c, 2+c-b) $a^{2} + c^{2} \times = 0$ e $a^{2} y + b^{2} \times = 0$ =D $L = (-a^{2}, b^{2}, c^{2})$ AK: 522+07-0 BC: x=0 W:= AKABC W= (0,62,-02) I= (a,b,c) 0=(a25,b258,c256)

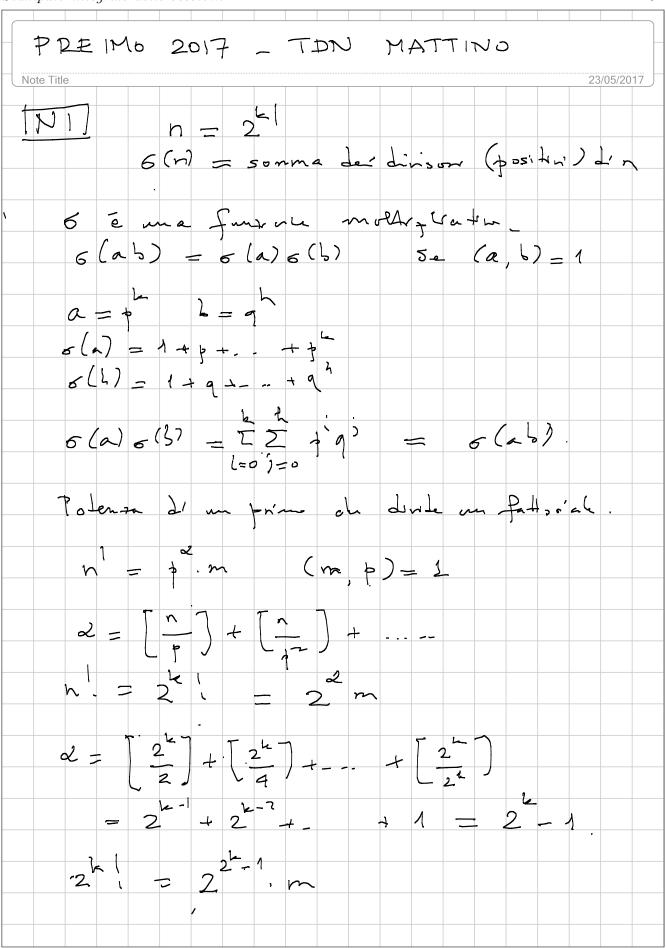



Sessione: Geometria Pomeridiana




Sessione: Geometria Pomeridiana





Sessione: Geometria Pomeridiana

Sessione: Geometria Pomeridiana

02			1 Tellil 0 1 tsu 2017
6 (2 1)	$= 6 \left(2^{2^{k}} - \frac{1}{2^{k}} \right)$). 6(m)	
	$= (2^{2})^2$	2)6(m).	
b \ 22	41 5	2 - 1	5 (n)
22	= - 2 (um)))	
	= 1 (und	' .,	-
ord, 2	= 2	p=1 (m	124)
	= 2 > > > > > > > > > > > > > > > > > >	24.	
[N3]	$n = \frac{1}{2} \left(\frac{1}{2}\right)^2$	$\Rightarrow -1) = q$	29+3)
1,9 prin	, Q	nah n som	4025 PICV
b=9;	p ² - p - 1 =	2 3 + 3	
(p-a)(p+1)	- p ² - 3 p -	4=0	=4 [20]
1 \ \ - \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			1
7 + 9 7	29+3	Cq+3=	R. R
Sostimando	si offrene	p ² _ p _ 1	= kg
المامان المامان الم	n secorde jes	2 2 2	+3k=k+
	"\ \ecorbo \de	+ 4] 2 2 -	- < p - Z = 2 kg
2 2 -	$-2p-2=k^2$	p-3L	

Diampato integrale dette sessioni	05
$(k+2) \neq 13k-2=0$	
$\Delta = k^4 + 4k^2 - 24k + 20.$	
1 > (k) se 4k2-24k +20>0	
4 (k-1) (k-5) 70 OK su k>5,	
△ < (k² + 2)² · SL . · _ 24 k → 16 · 20	
1 2	
Se k 75 1 comies 7 55 21 6-6-62 =	
∆ = (le²+1)² Sostrhan 2- si otrene	
2k² - 24k+19=0 no sol. inhu	
$k = 1, \chi, 3, \chi, 5$ le dispans	
k = 1, f, f, f, f	
$k=1$ $2^{2}-3+1=0$ $(2+1)(+1)=0$	
k = 3 2p - 11p +7 = 0 no rol. intere	
, , , , , , , , , , , , , , , , , , , ,	
$k-5$ $2+^{2}-27+13=0$ $7=13$ $7=\frac{1}{2}$ 10	
$r = \gamma (p^2 - \gamma - 17) = 2015$	

/ 1				
N2 055. Sta	come in	nota zion	e decimale	_ le_
cifre di p	osto z m	Sono	divisibili-	per 10 ^m
Si possono	ignorare			
or a	Q	≡ 0 V	nod 5 h	
<i>m</i> - 1				
buttion				
Vin g	-m-(9()	$\alpha_0 \equiv 0$	mod 5n	
Quindi possioneste	and core a	ere une	g Soluzion	e con
esotomente	n eibre	_		
Per indusione	· \	, = 5	D17 N=	1
>n-1, = 0	173	=	+ d-10 ⁿ	
n-1		M	. 2	
· d cifco	dispari			
· 22 + d	. 10 = 0	$n \left(5^{n} \right)$	+1)	
11	<u> </u>		/	
5 ^m (9 _m + 1	J an) =	0 (5 ^m	-+ ()	
5 (m + 1				
(=) 9 _n	4 d.2 =	0 (5)		
(=) d	$= -q_n$.	(2m)-1	(mod 5)	
	(, [,	7	00	L O
Scelas de	71,3,5	, , , 9 5	nella gius. di resto	a classe
			di resto	

ipaio iniegra	ic act	10 3033	00100												
Altern	ati,	190	A	ggiu	sta	re	le	C	fre	. i	ino	. ell	e_ √.	slter	•
9															
52	=	2.5	<u>-</u>												
		25 c)												
	૨	. 75													
					1	4 .	ш	0			- ۱ ۵				
Youlo	gle	2 (. כ	2	و	VW	Ие Т	le	5u	e 1	Cefr	re 20	no		
dispo	رتب	01	e ,	A) l	tri	u 4	uh		5 ce l	90	K	_ m	يسكر	ur	
Pourto dispo	Cui	lor	. ci	fra	. Ī	^	605.	Zùo	ne	K	φ ^c)) (vei_		
Somm															
J' C	o - M	- J	- 1	, 1	4T	O N EU	مروا	.,	m.	nu	me)·	to ?	need	h for	0
di 5		1,1	ورر	. 7	le au	e -	و _	cuf	re	7	-~	ی ور	. K		
Itero Eliui	s les	9 0	str.), <u> </u>	risp.	J.) <i>(</i>	k		10				
Flins	100	++	to -	b i	و : اب	10 10	n u a	re Ci) \ - (۔ ر بد +		olello	h 11 -	e 50 u	مدا
		, w			7	_		ی در	n~5	124	,	0 500	- '		

66		PreIMO Pisa 2017
N4 p(x) =	$\times^3 + \times \times^2 + 6\times$	
		Soluziones tox
deve esister	e n t.c. a: = -	p(n)
Considero igi	uindi l'egz. p(x)	$-\rho(\pi/=0)$
(2-	m) $(x^2 + nx + n^2 + a)$	(n+n)+b)=0
	3 Soluzioni intere (=	
	$\Delta = (n+a)^2 - 4(n^2 +$	an+6)
Par sand	$\Delta = (n+a)^2 - 4(n^2 + a)^2$ estar proviamo a preno	(a) 4 Q(= 0
1 oc sugac	a is solution of stend	
	$-4b-3n^2=\square$	
(ne cess	$-4b-3n^2= \square$ the a considerore Sol	on pourie
Voglio 6	tale che per "tauts"	Volorei din
	b-3n2 sier un que	adrecto
Questo e eq	uvalente a : per ogn	i K esiste b
modi olive	ruivalente on : per ogni ive come 3 n² + t²	in olineus h

Oss.
$$t^{2} + 3n^{2} = |t + \sqrt{-3} m|^{2}$$
 $\frac{1}{2} = t + \sqrt{-3} n$
 $|z|^{2} = z\overline{z} = (t + \sqrt{-3}m)(t - \sqrt{-3}m)$
 $= t^{2} + 3n^{2}$

• $(t_{1}^{2} + \sqrt{-3}m_{1})(t_{2} + \sqrt{-3}m_{2}) = t^{2} + 3n^{2}$

• $(t_{1}^{2} + 3m_{1}^{2})(t_{2}^{2} + 3m_{2}^{2}) = [(t_{1}t_{2} - 3n_{1}n_{2})^{2} + 3(t_{1}n_{2} + n_{1}t_{2})]$

Alla luce obly Osservatione, per trovare un bobusone prende un numero cle si scrive come $t^{2} + 3n^{2} = prende una postenza di questo.$
 $f = e^{2} + 3 \cdot 1^{2} = N(2 + \sqrt{-3})$
 $f^{2}m = N((2 + \sqrt{-3})^{2}m)$
 $f^{2}m = N((2 + \sqrt{-3})^{2}m - 2) \cdot N(f)$
 $f^{2}m = N((2 + \sqrt{-3})^{2}m - 2) \cdot N(f)$

n	t =	glio = 7	s _	(2+	√-3)2m	- 2)	+ (٤ – (√-3)	2m	-25	_			
n	t =	= 7 7	s _	(2+	√-3)2m	- 2)	+ (٤ – (√-3)	2m	-25	_			
n	t =	= 7 7	s _	(2+	√-3)2m	- 2)	+ (٤ – (√-3)	2m	-25	_			
n	. =	7	S .	(2	. +	V-3) 21	+ (2 n-i	2 - (J-3,			_			
n	. =	7	3	(2	. +	V-3) 21	2 n - 3	-	-						
			5	(2	+	V-3) 21	m – :	25							
				(8	+	V - 3			ر -	(-	. (- /s	m-z	S		
			-				′			(2	- (/-	3)				
Res	;ta							2	V-1							
Res	;ta															
(6)	;V9.	1						n		Ω				0		
1 -0 0		colo _l	_ ol	iuo	S 1,7-	رص	<u>e</u>	Che	·/	Jis	Secto	o W	ı e	J.	بمدوب	<i>w</i> b
V	ou	do	S		otter	egi	tu	tte	بو	ayp	٧.	oli				
		inte.		•		2 (00		9		- •						
					7	, ,	=	t	-4 3°	ne						
	list	inte.				(2	<u> </u>	-3)	2 m -	25 +	(2-	- V-3) 2 m	-25		
Spi	erio	uus	ch	٩											no	m
										2						
		<i>و</i>											•			
9.	יישני	90	jul.	<i>y</i> u	/	•										
()	L	_	ı			0.	_	_ 0	00_	ر ح		١- ٥	17 .	<i>L</i> ' o .	<u>م</u> با با	
Ψι	المعه	- 91 e	. Ju	na	. 8	σu	€.	90	بالمان	J.	ددر ـ		,	الم	7000	uta
		40														
		ی	R.	- (=	4 6	R K		7 a	cu-	- \					
												2				
	26-	- (2	+ V-	-3)) (% -	- (2 –	V-3)) =	- '	X	-4	× +	7	
Por	- ir	roluz	ione		se	7	1	a		œll	oro	7	2	a k-	- 1 -	
Me	>	910	=	1.	4	بننه	nd	- -	7,	fa	مرا	$\forall c$	<u> </u>			
		α_1				Į.		•		•	~	V '				12

N3-Gis

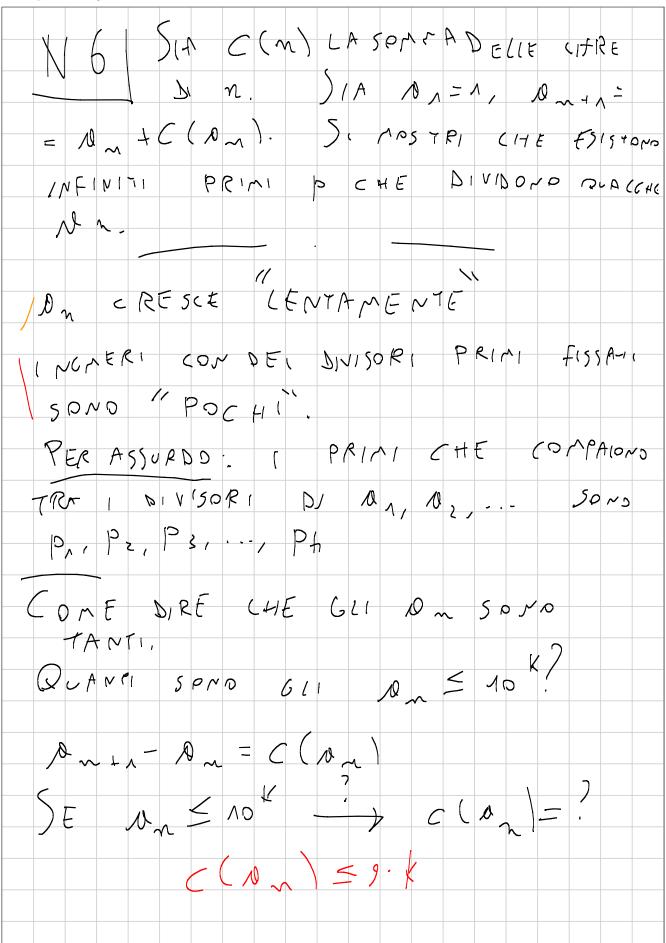
$$h(h^2-h-1)=q(2q+3)$$
 $h=q$ come preima

 $2q+3=Kh$
 $h^2-h-1=Kq$
 $2q+3=0(h)$
 $q=-\frac{3}{2}(h)$
 $-1=Kq(h)$
 $=-\frac{3}{2}K(1)$
 $K=\frac{2}{3}(h)$
 $3K-2=2h$
 $K=\frac{2}{3}(h)$
 $2q+3\geqslant h^2$
 $2q+3\Rightarrow h^2$

PREIMO Note Title	2017-	Tal	Pomeriagio 23/05/2017
NSI	$ m^{k}-m \leq$	<u></u>	
	di m		
		Zene <u>m</u> =	
		o il mex!	
		$m, n)$ con n $m \Rightarrow 2 m $	77211
	1 + g = g (m		
	(n! m²	2 /m /	
n: - 1-2	3· - (Q-I) (Q+	I) M	
$m \left(\frac{1}{2} \right)$	Ġ , , ,)		
$(m, \frac{m}{a})$	±1) = ==================================		
	M. ==	1=1,-1	

Sessione: Teoria dei Numeri Pomeridiana

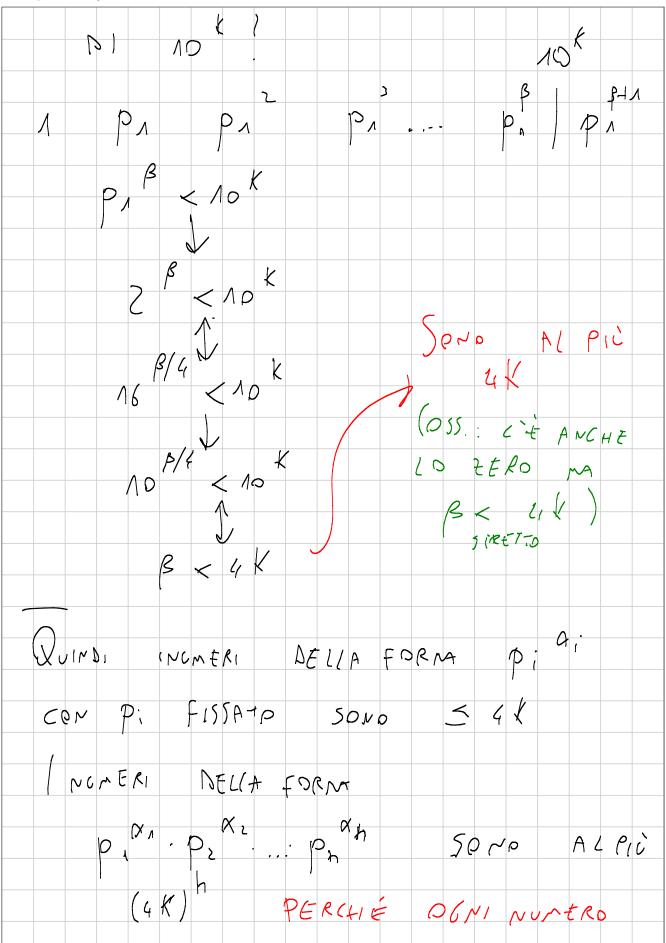
Sessione: Teoria dei Numeri Pomeridiana


					1 TeTWO 1 18th 20
00 0		ı ·		& '.	
4 50k	uziour d	1 cmq	quadra	dia m	rod 9
20 n	0 1.	+ (=			
		9/			
		{			
)= 	y 2 - 4 (5+コ)=	-34-	4	
Fatto not	1 (vaite	serio di	Eulers		
	$\left(\frac{n}{q}\right) \equiv$	M	(9)		
				~ 9-I	
" Jym. "	m = 5	· (m	+1) (n = I)=0(9)
				a - 1 =	0
Fatto no to	2				<u>.</u>
	1-2 × 1-2	F 01	dove	o a hu	8 exerce_\
*(1)= 9	h-2 × +	· ~ 9 ₀	tu	No moo	é errere
9-1					
2 8	(i) = 0	(9)			
1-5					

Sessione: Teoria dei Numeri Pomeridiana

tampato integrale aeli	e sessioni			
Lennarma 9-1 120	a.i ² +6) =	- (a)	(9)	
dimi	$\gamma \neq 0$	(a 12+6)		
	$= q^{2}$.	7-1 9-1 + 2 1 + 2 1 +	5=3 \\ 2)=
	$=-\left(\frac{a}{q}\right)$)		
$\begin{pmatrix} \Delta \\ q \end{pmatrix}$ $\begin{pmatrix} \Delta \\ q \end{pmatrix}$ $\sum_{s=0}^{q-1} \begin{pmatrix} \Delta \\ q \end{pmatrix}$	$= \left(\frac{-3}{9}3^{2} - 6\right)$ $= \left(\frac{-3}{9}\right)$	(9)		
450 T		2-3 5-0	<u> </u>	3)
Poriame	$\begin{pmatrix} -3 \\ q \end{pmatrix} = 3$			

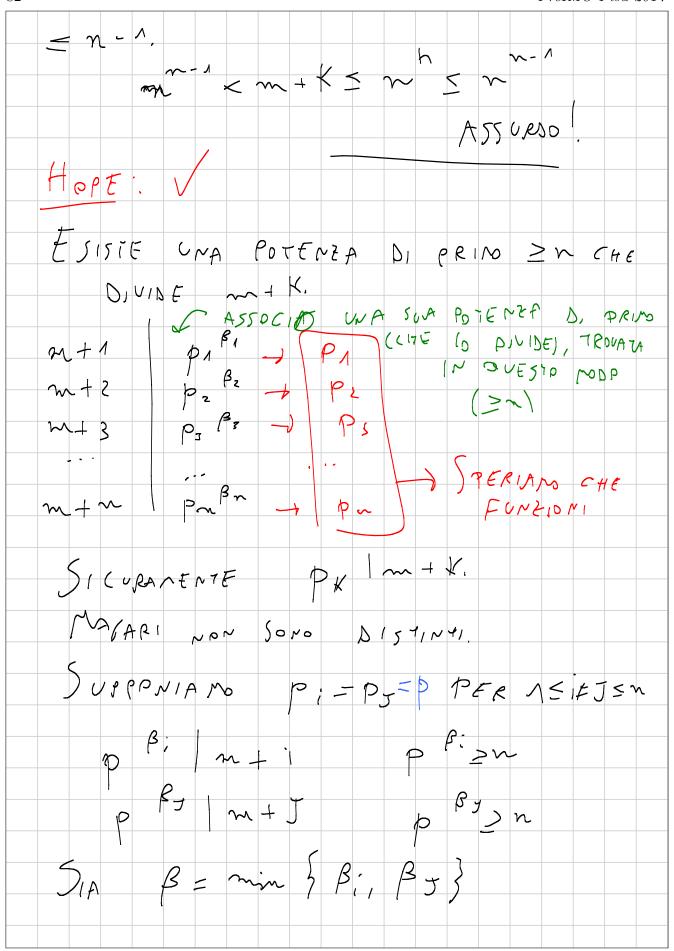
stampato integrale del			
per tutti	ghiy t.c. (3	$\frac{f(3)}{2} = -1 \qquad f(x) = 1$	= h(s) (q)
grindi.	p prende og	in 91 va	
1	s, per cen (
		zi mellinus	
- gh	y f.c. (300	= 0 (cioè lore	Ro 2
97 +2	Salora DISTW-	TI Reggionti de	n f


Evitians la Rec. Quadration	
$Q \equiv 1$ (3) (=) $\times^3 - 1 \equiv 0$ (9) Soluzioni	ha 3
Soluzioni.	
	(9) ha 2
$(\Longrightarrow) \times^2 + \times + 1 \equiv 0$ $\text{Solu}^2. \text{ mod}$	g
	un quadroto
	rodulo g
Contare le Soluzioni di 22 + 22 y + y	2 / (2)
convoire re some some on se + kg 4g	= -1 (9)
Sia q=1 (3). Allora -] w: u	2 + (1) + 1 - 5 (2)
	3 1 5 1 5 1 7
$x^2 + xy + y^2 \equiv (x - \omega y)(x - \omega$	$(2^{2}y) = -1(9)$
AB =	_ ((9)
	(
$ye = \frac{\omega A - B}{\omega - 1}$	
	P
{ Soluz. di x2+xy+y2=-((9)}	, { Soluz. di AB=-16
	9-1

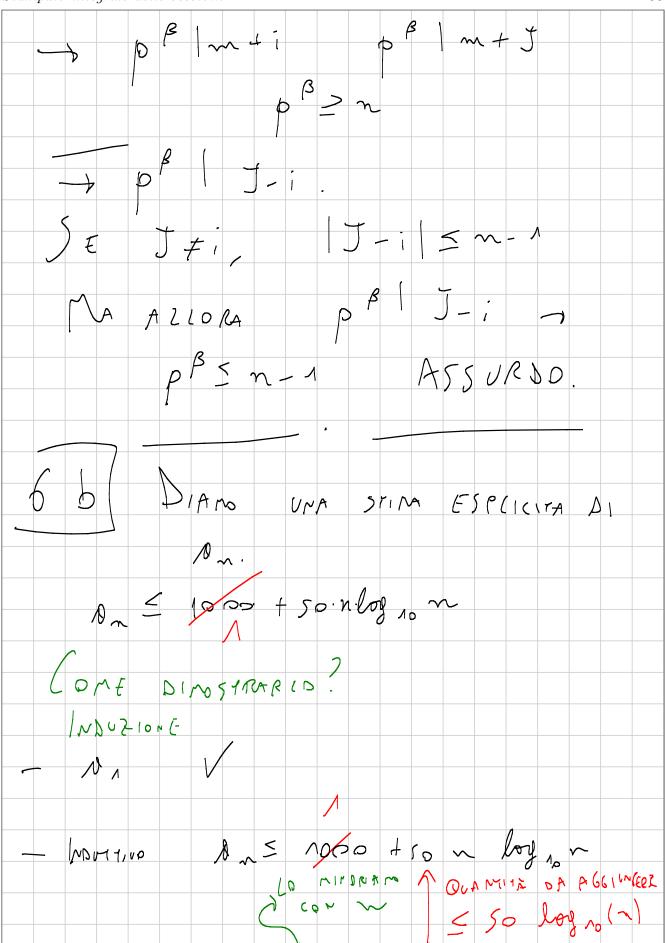
Sessione: Teoria dei Numeri Pomeridiana

78	PreIMO Pisa 2017
(MAX DI C(Y) COM XXI	ok & gk.
V1570 CHE SE 10 ~ < no*	ALCOR
L NONERO DI DON MINORI	BI 10 K
SARA ALMEND 10 K	104
$\leq 9 \times \leq 9 \times \leq 9 \times \leq 9 \times \leq \leq 9 \times \leq \leq \leq \leq $	5 9 K
II 5 TIMA (561 PA,, PA)	
CI CHIEDIAMO QUANTI SIAMO SELLA FORM PI PZ Ph	I COMER,
SECCA FORM PARTIALE	< \np
QUANTI SONO INUMERI DE LI	A FORM

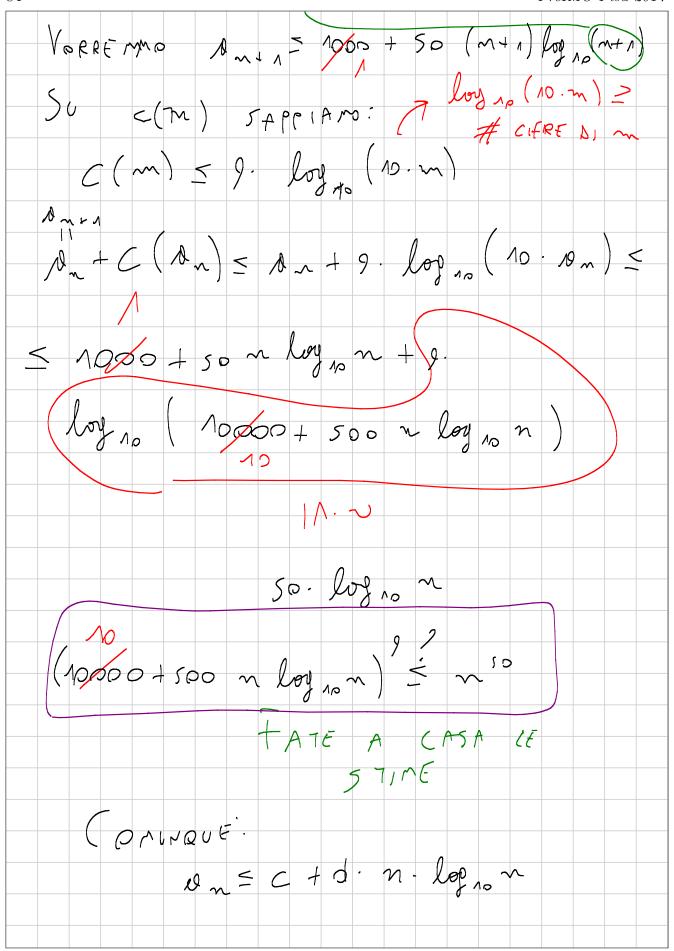
Sessione: Teoria dei Numeri Pomeridiana

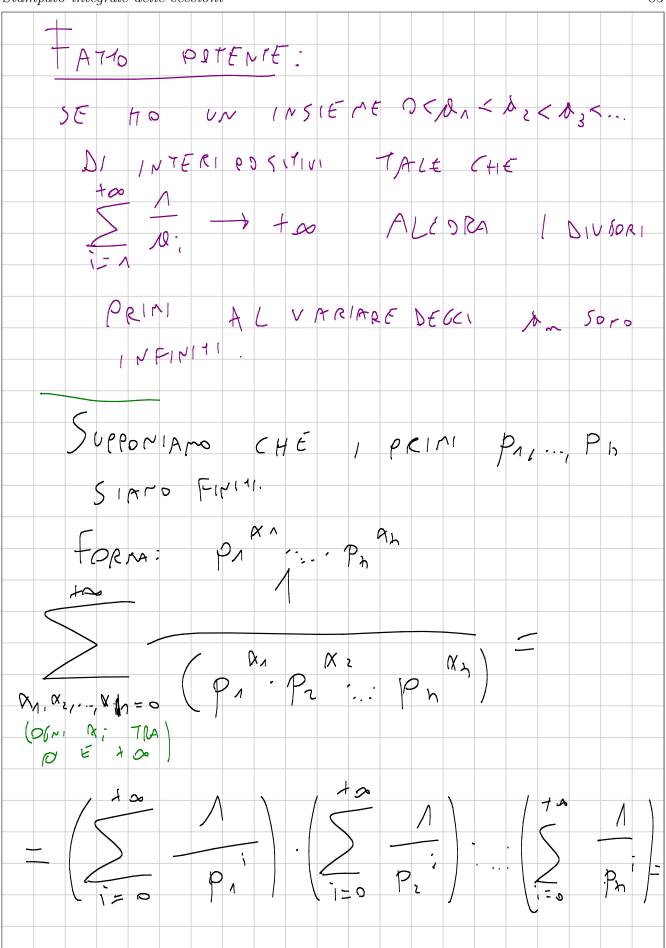


Sessione: Teoria dei Numeri Pomeridiana

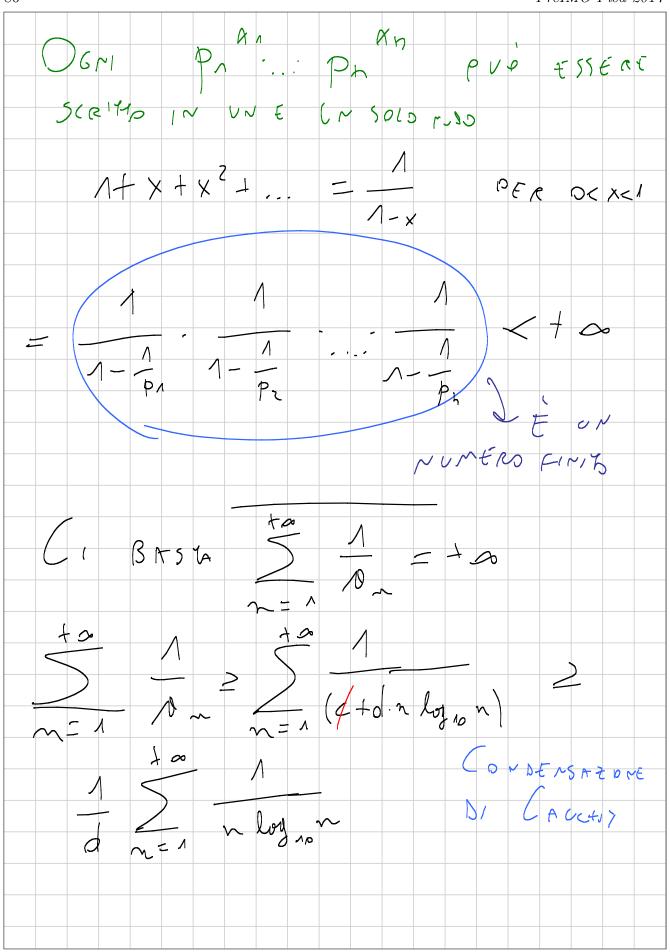

80			1	reimO Pisa 2017
	vEstr Fo Pi	. 8	(ROD) 7-10	١ كي
RIEPILS	06 A ~ DO ;		ν	
	~ < 10 K	} >	10 ×	
# { P	1 PA 17 -	< no k}.	$\leq (4k)^h$	<u>;</u>
SE 60	10 m	055ER0	7074, DEL	A FORM
		= {pi	A. Ph	< n { }
(4)	.h 10			
PER K	9. K ?	10 K C		=155 A10.
GLI E	560×EN5141	LI CRESCO	MOLTO	vt(ocentr
-ft D	FI COCINO	~		

Sessione: Teoria dei Numeri Pomeridiana

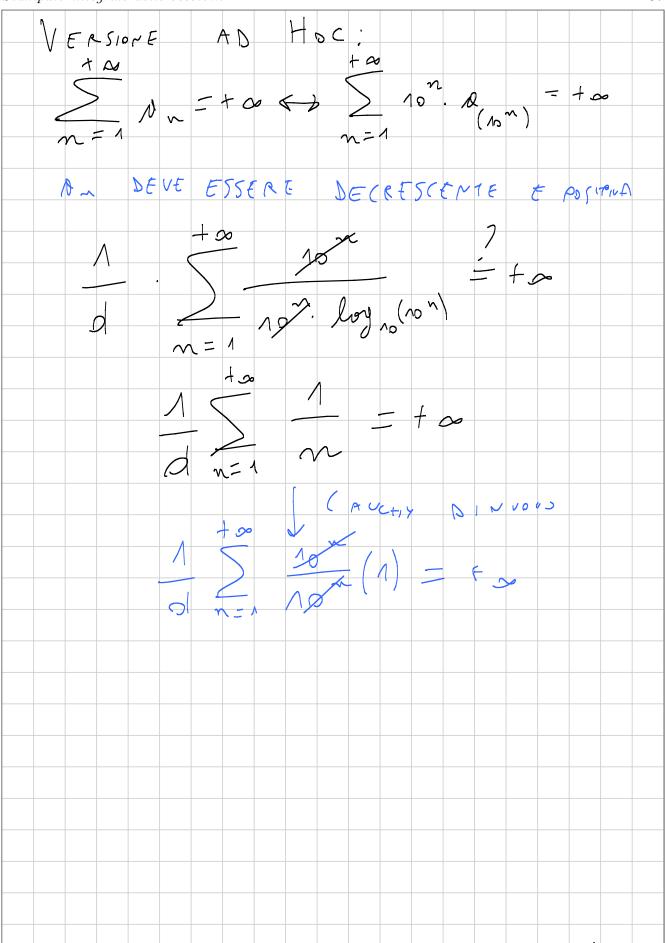

-							^ - - - - - - - - - -		
	7 .	4K		M-1	INTER	6 P	0)(1/0	is E	317
	_		> n						
	01051							J DISTI	
	P1, P			74	[]	C 4 E	PX	/ / ~ +	<i>\\</i>
	+12	_	<u>^</u> .						
				/					
	4 (551A)		N		Α.	0	۲ ۲		
	m +	Κ =	12/	". Р _г		Ph			
	HOPE:	رب ا	Q Uf	LCAIE	φ,	a;	ŧ ≥	~ .	
	Suppor				TRARIA				
~	_ 1		h_		< n	,			
n	< n + K	. –	= 1	O	< n				
	AND	, ρ	IA CER	ELBBE	: }	7 5 ^	n - 1		
					_			0 4 E ~ 7 (
	SICUR	0 P P V	γρ <u><</u>	\sim	- 1		1		
			h=						
	PAXA	, p	2 ,	,	Phx,	5	o~0	PER	
1	PPTESI								
	(6)10)			(()					



Sessione: Teoria dei Numeri Pomeridiana



Sessione: Teoria dei Numeri Pomeridiana



Sessione: Teoria dei Numeri Pomeridiana

Sessione: Teoria dei Numeri Pomeridiana

Sessione: Teoria dei Numeri Pomeridiana