$\qquad$
http://www.artofproblemsolving.com/community/c2335h1038680
Problem 2: In the Duma, there are 1600 delegates who have formed 16000 committees of 80 persons each. Prove that one can find two committees having at least four common members.

Source: Russian 1996

Idea: suglieudo a caso due commissioui, queste hanno in MEDIA, aluewo 4 persoue in comune (cu realtà basta 3.00001...)

Formalizzatione: fare un DOUBLE COUNTING
$X=\left\{\left(c_{1}, c_{2}, p\right)\right.$ : $c_{1}$ e $c_{2}$ sow commission $p$ parlamentone che sta in $\left.c_{1} e c_{2}\right\}$

Contiamo in 2 nodi gei elementi d' $x$. Supponianso per assurdo che due comuissioni abbiano max 3 persoue in comnue $\leq 3$
$\left(c_{1}, c_{2}\right)$-wISE: $|x|=\sum_{\left(c_{1}, c_{2}\right)}$ persoue comuli a $c_{1}$ e $c_{2}$

$$
\leqslant 3 \cdot \#\left(c_{1}, c_{2}\right)=3\binom{16.000}{2}
$$

$p$-wise: $|x|=\sum_{p}$ coppie comm. dee contengono $p$

$$
\begin{aligned}
& =\sum_{p}\binom{C(p)}{2} \quad C(p)=\# \text { commission } \\
& \\
& =\frac{1}{2} \sum_{p} C(p)^{2}-C(p) \\
& =\frac{1}{2} \sum_{p} C(p)^{2}-\frac{1}{2} \sum_{p} C(p) \geqslant \frac{1}{2} \frac{\left(\sum C(p)\right)^{2}}{\# p}-\frac{1}{2} \ldots
\end{aligned}
$$

Ora $\sum_{p} C(p)=80 \cdot 16.000$

$$
Y=\{(C, p): p \in C\}
$$

$p$-wise: $|y|=\sum_{p} C(p)$
$C$-wise: $|T|=\sum_{c} 80=80 \cdot \#$ comm $=80 \cdot 16.000$
Concludendo trovians

$$
3\binom{16.000}{2} \geqslant|x| \geqslant \frac{1}{2} \frac{1}{1.600}(80 \cdot 16.000)^{2}-\frac{1}{2} 80 \times 16.000
$$

Srimppaudo il couto trovo un assurdo!
$\qquad$ 0 $\qquad$ 0 -
Alternativa: iuvece dell' assmolo, pore $k=$ max \# persone comumi e sorivere
$k\binom{16.000}{2} \geqslant \operatorname{RHS}$ e sperare di ottewere $k \geqslant 3,00001$
$\qquad$
Problem 3: In an \$nltimes $n \$$ array, each of the numbers $\$ 1,2, \ldots, n \$$ appears exactly $\$ n$ $\$$ times. Show that there is a row or a column in the array with at least $\$ \backslash \operatorname{sqrt}\{n\} \$$ distinct numbers.

Source: MOP 2007
$X_{R}=\{(R, K)$ : numero $k$ compone vella niga $R\}$
$X_{c}=\{(c, k): \quad \cdots \quad$ "colonna $C\}$

Suppouiamo per assundo cle egui riga o col. ha ureno di $\sqrt{n}$ numeni distinti

$$
\begin{aligned}
\text { R-wise: } & \left|x_{R}\right|=\sum_{R} \text { numeri (R) } \\
& \left|x_{c}\right| \\
& <\sqrt{m}(\# \text { Righe })=m \sqrt{m} \\
\left|x_{R} \cup X_{c}\right| & <2 m \sqrt{n}
\end{aligned}
$$

k-wise: $\left|x_{k} \cup x_{c}\right|=\sum_{k}(R(k)+C(k)) \geqslant \sum_{k} 2 \sqrt{R(k) C(k)}$
righe in ci appare
i) numen $k$


$$
R(k) \cdot C(k) \geq m
$$ gui numerok appare u volt

$$
\left|x_{k} \cup x_{c}\right| \geqslant \sum_{k} 2 \sqrt{n}=2 \sqrt{n}(\# k)=2 m \sqrt{n}
$$

Metteudo iusieure $2 m \sqrt{m}<2 m \sqrt{m}$ assundo.

Problem 4: Suppose 799 teams participate in a tournament in which every pair of teams plays against each other exactly once. Prove that there two disjoint groups A and B of 7 teams each such that every team from A defeated every team from B.

Source: Iran TST 2008
$x=\{(A, p):|A|=7, p$ battle tutti: componenti di $A\}$
Ipotesi di assundo: ogui A è associato al max a 6 persoue
A-wise: $\quad|x| \leqslant 6 \cdot(\# A)=6 \cdot\binom{799}{7}$
$p$-wise: $\quad|x|=\sum_{p}\binom{\sqrt{(p)}}{7}$ vittorie dip

$$
\sum_{p} V(p)=\# \text { partite }=\binom{799}{2}
$$

Speriauwo che la somme di $\binom{V(p)}{7}$ sia minima quando i $V(p)$ sous tutti uguaci, cioé

$$
V(p)=\frac{1}{799} \frac{799.798}{2}=399
$$

Se fosse cosi concluderei

$$
799 \cdot\binom{399}{7} \leq|x| \leq 6 \cdot\binom{799}{7}
$$

e questa dounebbe essere assunda

$$
799 \cdot \frac{399.398 \ldots .393}{7!}>6 \frac{799 \ldots .793}{7!}
$$

$$
\frac{799}{6}>\frac{799}{399} \cdots \frac{793}{393}
$$

VERA, wa uon si verifira con il $2^{7} \ldots$

Oss. Tutto sta a dim. una specie di "couvessita" "del binomiale

$$
\begin{aligned}
& \binom{x}{2}=\frac{x(x-1)}{2} \quad\binom{x}{3}=\frac{1}{6} x(x-1)(x-2) \\
& \text { Quaudo facciaus } \sum\binom{V(p)}{7} \\
& \text { stiano faceudo }
\end{aligned}
$$

quiudi basta per $x \geqslant 6$ e

$$
\sum f(v(p)) \quad \text { dove }
$$

questo si puó fare per inolusione
 con la derivata $2^{a}$
$f_{k}(x)=x f_{k-1}(x-1)$ e ara calcolo la derivata $z^{a} o$
a cueno
di un coeff.
uso prodotto di fuuzioni couvesse, positive crescenti.

Problem 7 (IMO 1998 [8])
In a competition, there are a contestants and b judges, where $\mathrm{b} \geq 3$ is an odd integer. Each judge rates each contestant as either"pass" or "fail". Suppose k is a number such that, for any two judges, their ratings coincide for at most k contestants. Prove that

$$
\begin{aligned}
& k / a \geq(b-1) /(2 b) \text {. } \\
& X=\left\{\left(g_{1}, g_{2}, c\right): g_{1} \text { e } g_{2}\right. \text { som gindici dhe sowo } \\
& \text { d'accondo sul coutestant c\} } \\
& \left(g_{1}, g_{2}\right) \text { wise: } \quad|x|=\sum_{\left(g_{1}, g_{2}\right)} \underbrace{\text { agreement }\left(g_{1}, g_{2}\right)}_{\leqslant k} \\
& \leqslant k \#\left(g_{1}, g_{2}\right) \\
& =k\binom{b}{2}
\end{aligned}
$$

c-WISE: $\quad|x|=\sum_{c}$ giudici d'accordo (c)

$$
=\sum_{c}\binom{s(c)}{\uparrow 2}+\binom{P(c)}{2} \quad \text { giudici che }
$$

giudiai che
segano $c \quad S(c)+P(c)=b$

$$
\left[\geqslant \sum_{c} 2\binom{b / 2}{2}\right] \text { Esseudo b dispani uon }
$$ è otticuale

$$
\geqslant \sum_{c} \underbrace{\left.\frac{b+1}{2}\right)+\left(\frac{b-1}{2}\right)}_{\uparrow}
$$

Sviluppando tutto vieue... questo couto algebrico va giustificato (QM-AM) con il viucdo de sowo inten'.

Problem 3 (IMO 1987 [8]) Let $p_{n}(k)$ be the number of permutations of the set $\{1, \ldots, n\}, n \geq 1$, which have exactly $k$ fixed points. Prove that

$$
\sum_{k=0}^{n} k p_{n}(k)=n!.
$$

(Remark: A permutation $f$ of a set $S$ is a one-to-one mapping of $S$ onto itself.
An element $i$ in $S$ is called a fixed point of the permutation $f$ if $f(i)=i$.)
1ouodo C'è una formula per $p_{m}(k)$ con deutro una somme. tonia, e riorganizzando i temuimi DOVREBBE venite.

20 modo $X=\{(6, x): \sigma$ permut. e $\sigma(x)=x\}$

Problem 1 (IMC for University Students 2002 [5]) Two hundred students participated in a mathematical contest. They had 6 problems to solve. It is known that each problem was correctly solved by at least 120 participants. Prove that there must be two participants such that every problem was solved by at least one of these two students.
$X=\left\{\left(p, c_{1}, c_{2}\right): p\right.$ è stato risolto da $\left.c_{1} \quad o \quad c_{2}\right\}$
Supponiams la tex falsa. Allora



$$
5\binom{200}{2} \geqslant|x| \geqslant 6\left[\binom{200}{2}-\binom{80}{2}\right]
$$

Spero dhe sia assurda: $\quad 6\binom{80}{2}<\binom{200}{2}$ VERA?
$6 \frac{80.79}{\nsim}<\frac{200.199}{\chi}$ or di poco
Oss. Forse caweuiva coutare
$X=\left\{\left(c_{1}, c_{2}, p\right): c_{1}\right.$ e $c_{2}$ mon hanno risolto $\left.p\right\}$

Problem 2 (IMO Shortlist 1987 [8]) Show that we can color the elements of the set $\{1,2, \ldots, 1987\}$ with 4 colors so that any arithmetic progression of ten terms, each in the set, is not monochromatic.
$X=\{(C, p): p$ è una progressione di 10 termiui unnocromatica per la coloratione C\}

Ipotesi di assurdo: $\forall c$ coloratione $\exists$ p progressione

$$
\text { C-wise }|x|=\sum_{c} \text { mowocram (c) } \geqslant \# c=4^{1987}
$$

p-wise $\quad|x|=\sum_{p}$ Coloratioui de rendono p monocrour

$$
\begin{aligned}
& 4_{\substack{4} 4^{1977}}^{\text {colae per p }} \\
& =4^{1978} \cdot(\# p)
\end{aligned}
$$

Quiudi ottenge $4^{1978} \cdot(\# q) \geqslant 4^{1987}$, cioe $(\# p) \geqslant 4^{9}$
Idee per contone \#甲
$\rightarrow$ fisso il 10 e vedo quante ragjoni posso permettermi
$\rightarrow$ fisso la vagione e vedo quauti inizi vanmo beve
$\rightarrow$ fisso il lo e l'ultimo in una opportma classe mod 9.

Idea probalistica che sta sotto:
$\frac{1}{4^{9}}$ è da prob. che una progressione colorata a caso sia unomocrom.
Moltiplico per il numero di progressioui (sfruttaudo un po' di linearità ) e ottengo de la prob. di avere una unonocromatica è <1 (il numero cuedio di prog. monocran ie <1, quind...)

Problem 17 (Szele 1943 [1, Chap. 2]) In a (round-robin) tournament, evdry player plays one game with every other player. A Hamiltonian path of the tournament is an ordering of the players from left to right so that every player (except the last) beat the player immediately to its right. Let $n$ be a positive integer. Show that there is a tournament with $n$ players that has at least $n!2^{n-1}$ Hamiltonian paths.
$X=\{(G, c)$ : il caumino $c$ è Ham. vel grafo $G\}$
Ipotesi di asscndo: $\forall G$ graft, i cammiui $<\frac{n!}{2^{n-1}}$
G-wise: $|x|<\frac{n!}{2^{m-1}}(\# G)=\frac{n!}{2^{n-1}} 2^{(n}$
c-wise: $|x|=\sum_{c} \frac{\text { Grafi }(c)}{2^{(n)-n+1}} \quad \# c=n$ !.

$$
n!\cdot 2^{\binom{n}{2}-n+1}<\frac{n!}{2^{m-1}} 2^{\binom{m}{2}} 0_{0} \quad 1<1 .
$$

Problem 28 (IMO Shortlist 1991 [8]) Let $A$ be a set of $n$ residues $\bmod n^{2}$. Show that there is a set $B$ of $n$ residues mod $n^{2}$ such that at least half of the residues $\bmod n^{2}$ can be written as $a+b$ with $a$ in $A$ and $b$ in $B$.
$X=\{(B, x):|B|=n, x$ won si scrive come $a+b\}$
Ipotesi di asscudo: $\forall B$ gee $x$ sono $\geqslant \frac{m^{2}}{2}$
B-wise: $|x|=\sum_{B} \underset{<\frac{n^{2}}{2}}{\operatorname{residui}(B)} \geqslant \frac{m^{2}}{2}(\# B)=\frac{m^{2}}{2}\binom{m^{2}}{m}$
$x$-wise: $\quad|x|=\sum_{x} \underbrace{\# B \text { che non peruettono di scrivere } x}_{B \text { dave evitone i valoni } x-a \text { con } a \in A}$

$$
\begin{gathered}
=\binom{n^{2}-n}{n} \\
=\binom{n^{2}-n}{n} \cdot(\# x)=n^{2}\binom{n^{2}-n}{n}
\end{gathered}
$$

Ho otteurto $\quad \frac{x^{2}}{2}\binom{n^{2}}{n} \leqslant n^{2}\binom{n^{2}-n}{n^{2}}$ de spero assurda, cioé vonei che

$$
\begin{aligned}
& \binom{n^{2}}{n}>2\binom{n^{2}-n}{n} \\
& \frac{n^{2}\left(n^{2}-1\right) \therefore \cdot\left(n^{2}-n+1\right)}{n!} \stackrel{?}{>} 2 \frac{\left(n^{2}-n\right): \cdot\left(n^{2}-2 n+1\right)}{n!} \\
& \left(\frac{n^{2}}{n^{2}-n}\right)\left(\frac{n^{2}-1}{n^{2}-n-1}\right) \cdots\left(\frac{n^{2}-n+1}{n^{2}-n n+1}\right) \geqslant 2 \\
& \left(1+\frac{n}{n^{2}-n}\right)\left(1+\frac{n}{n^{2}-n-1}\right) \cdots ? 2 \\
& \left(\text { CHS }>1+\frac{n}{n^{2}-n}+\frac{n}{n^{2}-n-1}+\cdots\right. \\
& \quad \geqslant 1+\frac{1}{n}+\frac{1}{n}+\cdots+\frac{1}{n}=2 .
\end{aligned}
$$

1 MO 2014-6 m rette in posizione generica mel piaw ne caloro $k$ di blu in uodo che liessuna regione limitata del piamo abbia il bordo tutto blu.
Domauda: quauto può essere graude k?
Marking scheme: $K \geqslant C M^{\alpha} \quad 1$ pto

$$
\begin{array}{ll}
k \geqslant c \sqrt{n} & \text { con } 0<c<\frac{1}{\sqrt{2}} \quad 2 p+i \\
k \geqslant \frac{\sqrt{n}}{\sqrt{2}} & 4 \text { pti } \\
k \geqslant \sqrt{n} & 7 \text { pti }
\end{array}
$$

Teutativo basic
$X=\{(C, R): C$ è una scetta di $k$ restse blu
$R$ è una regiove blu \}
Ipotesidi assundo: $\forall C$ esiste una regione blu
C-wise: $\quad|x|=\sum_{c}$ regioui blu (c)

$$
\geqslant \# c=\binom{n}{k}
$$

R-wise: $\quad|X|=\sum_{R}$ coloratioui che reudowo $R$ blu

$$
=\sum_{R}\binom{n-l(R)}{k-\underbrace{1}_{\text {l }}(R)} \leqslant \sum_{R}\binom{n-3}{k-3}
$$

lati della regione

$$
\therefore \because \quad=\binom{n-3}{k-3}(\# R)
$$

$$
3 \text { reote } \rightarrow 1 \quad \text { n rette }=\Delta(n-2)=\frac{(n-2)(n-1)}{2}
$$

$4 \rightarrow 3$
5 reite $\rightarrow 6$ Abbiamo otlenuto

$$
\begin{aligned}
& \binom{n}{k} \leqslant\binom{ n-3}{k-3} \frac{(m-2)(k-1)}{2} \\
& \frac{n!}{k!(u-k)!} \leqslant \frac{(n-3)!}{(k-3)!(n-k)!} \frac{(n-8)(a-1)}{2} \\
& k(k-1)(k-2) \\
& 2 m \leqslant k(k-1)(k-2)
\end{aligned}
$$

Idea più fine: prendianno coufig. con $k$ ottimale uon uighiorabile (cioé se ogginugo una retta blu, reudo blu alueno una regione)

A ogui retta verole associo una delle regjoui che diventano blu se lo diveuta auche lei

rette veroli $\rightarrow$ regioni Rimitate

$$
n-k
$$

$$
\frac{(n-1)(n-2)}{2}
$$

INIETTIVA, cioè $\mid$ arrivo $|\geq|p a r t e n t a|$, il che è ouvio

Definisco punto blu ogui iucrocio di 2 rette blu
rette verdi $\rightarrow$ pito blu a caso della regione (odi una $\uparrow$ delle regioui) che diveuta blu.

$$
u-k
$$

$\binom{k}{2}$

$$
\begin{aligned}
& u-k \leq\binom{ k}{2} 4 \\
& u-k \leq 2 k(k-1) \\
& u-k \leq 2 k^{2}-2 k \\
& u \leq 2 k^{2} \quad k \geq \frac{\sqrt{n}}{\sqrt{2}}
\end{aligned}
$$

Se voglio migliorare il $\frac{1}{\sqrt{2}}$ devo mighbrare il $4: 1$, miglioran. do la scelta del pito blu associato.


Posso preudere il prims blu in senso orario.

Problem 18 (Erdős 1963 [1, Chap. 1]) Let $k$ be a positive integer. Say that a (round-robin) tournament is $k$-unrankable if for every set of $k$ players, there is another player who beat all of them. Show that there is a tournament with more than $k$ players that is $k$-unrankable.
$X=\left\{(G, A)\right.$ : in $G^{\text {NoN }}$ esiste $p$ che batte tutti ghi elem. di $\left.A\right\}$
Ipotesi di assurdo: $\forall G \exists A$ t.c. $(G, A) \in X$
G-wise: $|x| \geqslant \# G=2^{(2)}$
A-wise: $\quad|X|=\sum_{A}$ grafi in aii A nou è dourinato da nessun p


$$
\begin{gathered}
2^{\left(\frac{k}{2}\right)} \cdot 2^{\left(u_{2}^{-k}\right)} \\
\uparrow \begin{array}{c}
1 \\
\text { Datro A FuridaA } \\
\text { a caso } \\
\left(\frac{k}{2}\right)+\left(u_{2}^{-k}\right)
\end{array} a^{\left(2^{k}-1\right)^{m-k}} \# A A
\end{gathered}
$$

$$
\frac{\left(2^{k}-1\right)^{n-k}}{\uparrow}
$$

Da egui vertice fusi avki $2^{k}$ possibilitá dentro $\binom{n}{k}$
Spers de

$$
\binom{n}{k} \cdot 2^{\binom{k}{2}+\binom{u-k}{2}} .
$$

$\cdot\left(2^{k}-1\right)^{n-k}<2$
$\binom{n}{2}$ per $n$ graude

$$
\left.\begin{array}{l}
\binom{n}{k}\left(2^{k}-1\right)^{n-k}<2^{\binom{n}{2}-\binom{k}{2}-\binom{u-k}{2^{2}}=k(u-k)} \\
\binom{n}{k}\left(1-\frac{1}{2^{k}}\right)^{n-k}<1 \\
1
\end{array}\right) \quad \begin{aligned}
& \text { espoueutiall cou } \\
& \sim m^{k} \text { base }<1 .
\end{aligned}
$$

