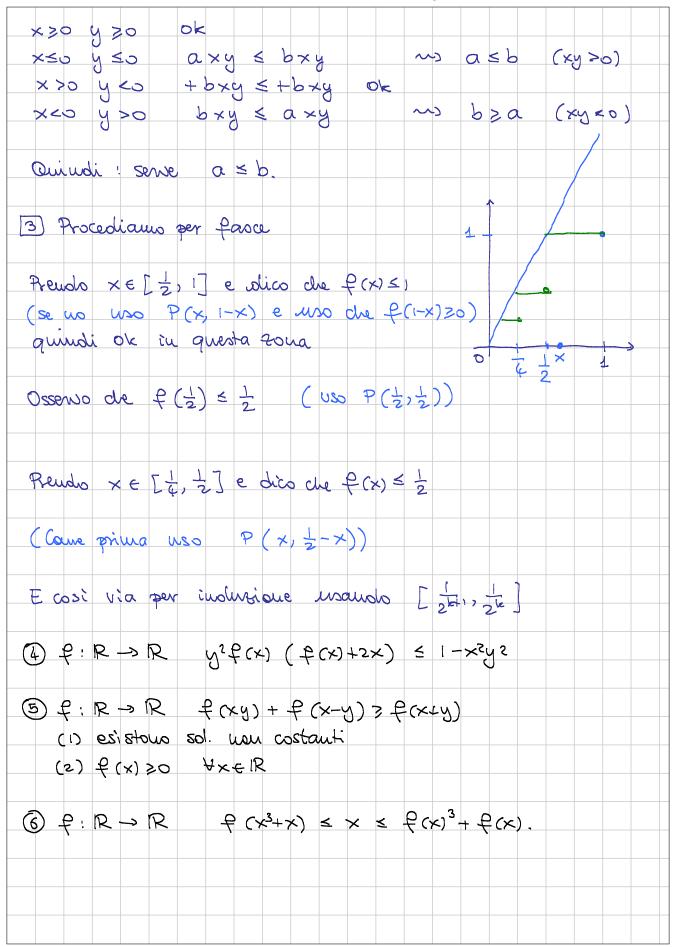
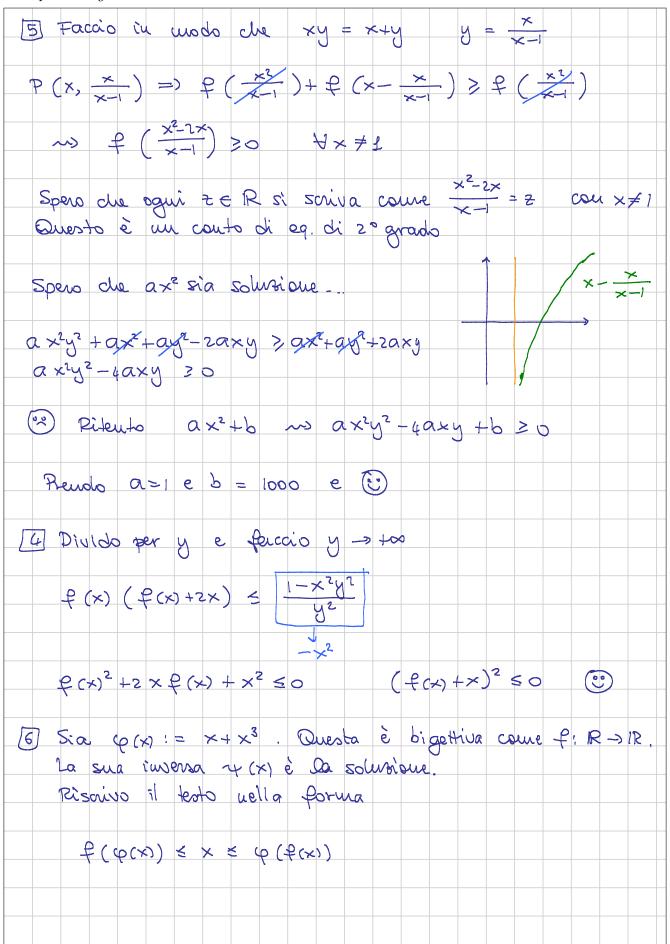
Stage Senior 2018 – Livello Advanced Stampato integrale delle lezioni

Autori vari

Indice


Algebra (Disequazioni funzionali) – Massimo Gobbino	4
Combinatoria 1 – Andrea Bianchi	18
Combinatoria 2 – Luca Macchiaroli	32
Geometria 1 – Luca Macchiaroli	13
Teoria dei Numeri 1 – Andrea Bianchi	53
Teoria dei Numeri 2 – Davide Lombardo	36
Teoria dei Numeri 3 – Davide Lombardo	36
Preliminari – Andrea Bianchi)2

SENIOR 2018 - ALGEBRA - Advanced (Max)
Note Title 04/09/2018
Disequazioni funzionali)
Idee che è utile provone (portansi da casa)
(1) Cercare di otteuere & (x) > q.c.
€(x) ≤ q.c. (possibilmente la stessa)
(OSS le disug Classiche, con il verso invertito, producous uguaglianse)
a contract (wee)
2 Occluso di segui quando si moltiplica/divide
3 Reiterare delle sticue
4 Provone a dimostrare una lesi più Porte
5 Dans dei valori de permettano di semplificare 2 termini!
6 vedere l'eq, fourionale come una diseq nella variabile "frx)
composizioni di grando basso e uon ci sous
3) Passare alami parametri al limite
3 Quando siamo su M, ci sous i minimi!!
3 Guardare la CRESCITA (11) Siturgione con
3 su progr. geow.
(30) Peusare alla MONOTONIA ≤ su progr. anitu


 ${\bf Algebra~(Disequazioni~funzionali)~(Advanced)-Massimo~Gobbino}$

3 4:	R ->	R	₽(×	ty).	+ + (;	VtS) t	£ (=	£4 ×)	≥3 {	(x+2	y+3&)
② 4:	R	R	£ (:	×y)	& ×	ę (y)					
3 4:	[0,1]	→ [c	·				'ųγ ≤	£ (×-	۲ij) o	uaudo	posc.
Diwo	strane	che						•	o l		1
	,0,0)	=> => x) =>	280	*) +	- 8 (0) ≥ 3	3 4 (7	(0) ^	n) \$ (.5×) ≥ .	
Quin	oli sd	o le	costau	nti							
P (1/2	, x) =) \$() \$('() ≤ -	× +) (×)	car an an	eto:	[X] > × >0		I) A	4×>0
₽ (*	(,-1)	⇒ d €	?(-~)	£ 7	· PC	-1)	Ą	× >0		₽(-1)	A×>0
Mauca	us :	→ ¢	2(0) serific	a							
P (x,0)										~> -	((0)
Ora oc	cone		care o	the	tute	. Q e .	feur	noui			

 ${\bf Algebra~(Disequazioni~funzionali)~(Advanced)-Massimo~Gobbino}$

Algebra (Disequazioni funzionali) (Advanced) – Massimo Gobbino

Algebra (Disequazioni funzionali) (Advanced) – Massimo Gobbino

Applia	· 4 (alla d	isug.	di do	< ('	C220¢	perd	ý e	strett.	orec.	
η	4C*) ,	< 4(φ(¢ c	k1))	= P (×	-)					
Metho.	ψ (*)	al pos	sto di	× 11	1 948	lla di	2×				
\$(4)) = {	ک ^و (بو (۲	((×1))	£ 4	· (x)	<u></u>					
7 8	: 12	-> N)	₹(′	m+1) >	> 2 (-	€ (m))	(IMO	(977-	6?)
L'ani	.ca sol	. è	P(m)	= m	¥m€	N					
Diu 1	Sìa	Mo ≥	o t.		(mo)			(w)	: M>	0}	
Dica cl			, all		γ.πο						
P (mo-) =	5 2	(mo) :	> & (-	P (mo-) >	P (m	(0	assu	udo	
Quiudi	C Me	=0	e \$	(w)	≥ 80	1+(0	7	m ≥1			
Sia n	11 21	t. c.	4	(mi) =	- unic	1 { 6	(m)	m 21	}		
Dico d Se fos											
P (m1-	1) =	2	mı) >		? (m,-1) ? +(o)+	+	£ C	m1)	assu	wb	
Duing	i n	(=)	٤ 6				An	> 2			
Ota P	'(0) =	=) :	P(1)	> 🗜 ((o)		ie fo	o) >c	soul	blio	

 ${\bf Algebra~(Disequazioni~funzionali)~(Advanced)-Massimo~Gobbino}$

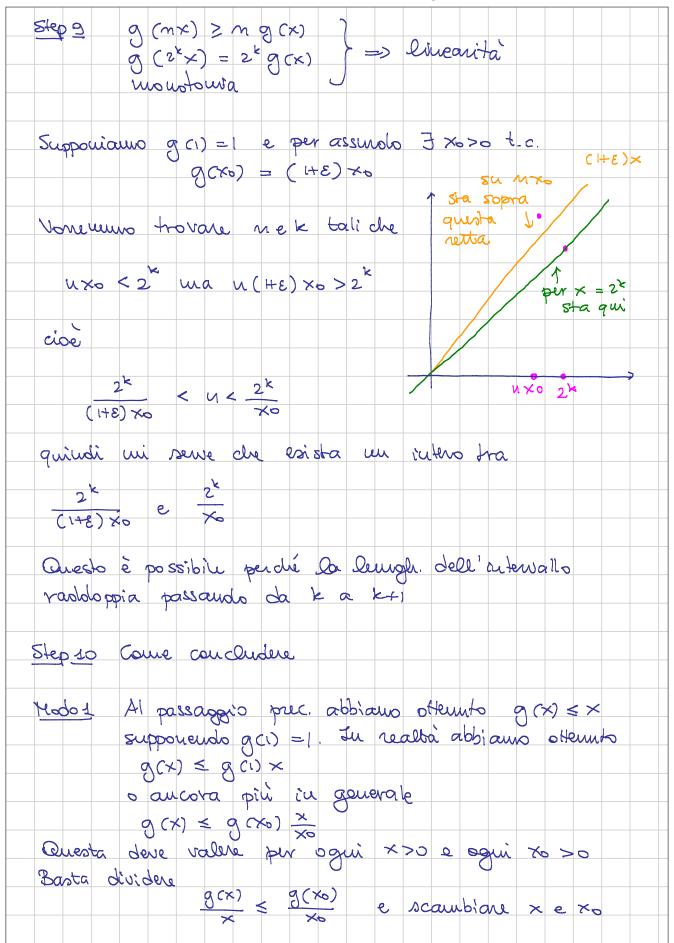
_	legrate a							0.2		0 1	
Auda	udo	avaut	1 COU	- M	2, N	13,	. , S	. 047.4	eue	Low He	A.
+	·_ <	500, 10.			_ 0			1_	٠ اــ	56	
Esercia					e co			21 810		.000511	14400
		per iw	gusia	ν.							
72440	1		50			21121-	P	(1-) >	0.0		
Dim 2	Letti	.u.u	36	~ 5 /	νς, ε	MIOYO	+	(R) 3	. 100		
Dim	Dave i'i	اغييا	D.I.An	112		bau	400				
	n+1]							6 N		2 041	
	per	1					.				Pa.
7111010	'		> 4	_				200114		1,001	
Quin	di -			`							
3200.00											
Il Vau	tanair	del	. Oo w	מאנו	e. ch	e 01	a ho	s uu	$\alpha \circ \alpha$	ERRONU	u orsione
a 2 p											
• Q (1	1, M)	=>	P(m)	≥m	,						
• Q (P(W)_	£(m))	=)	P	(C C	ב (נמ	£ ((m) =	=) .	P (m+)>f(m)
	~ 84						1				
• 4	(m+1)	> 2	-(Q(v	1)) +	ste	tha	nesc	enta,	~	tn c	1> f(u)
		<u> </u>									
Fatto	gener	orle	76) > ₽	(b)	+ 8	stret	t. ores	o c. 🔿	ns a	> b
			,			0 -					
8 4	, 91 ;	N*	> N	J*							
2,0,1	(w) + 9	1	(m) =	= 8	(U+1)) - 91	(m+1)+:)	
	divi c	li cou	1 12001	one							
		,									
\$ (n	+1) =	\$	(m)	+ 9	(,	n) +	9 (2	1+1)—	1	> 2'	(m)
		,			21		J	> 0	1		

 ${\bf Algebra~(Disequazioni~funzionali)~(Advanced)-Massimo~Gobbino}$

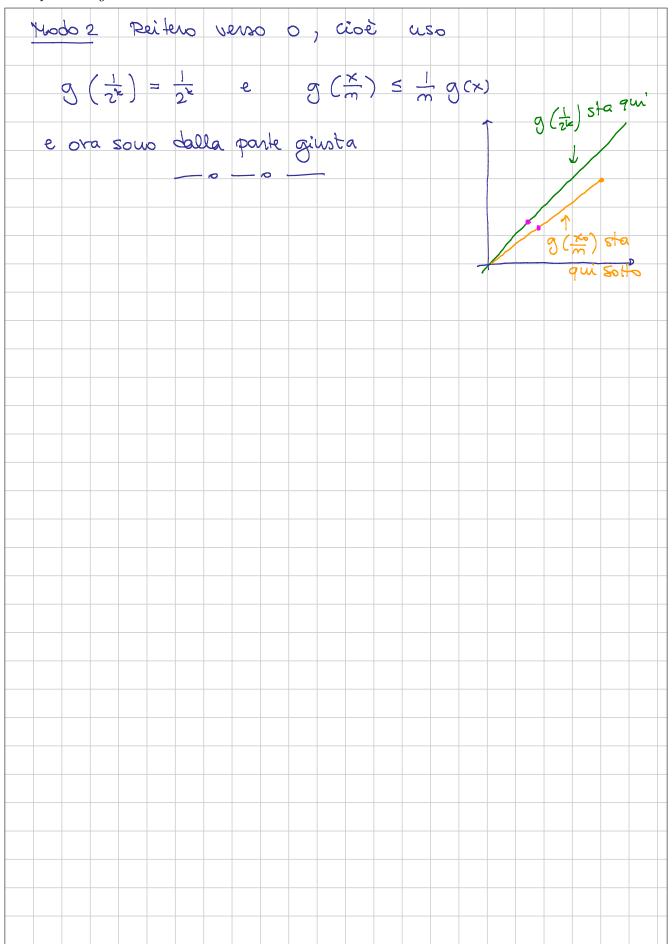
L'esercizio	7 51 generalizza facilmente a	
£ (m+1)	$> \xi^{(k)}(m)$ can $k \ge 2$ ξ :550	
(skssa diu	u.)	
wa anchi		
€ (m+1)	> f (n) con ky > 2 succ. data	
	che uno sa che f(u)=n si trova gfor	aile.
9 P. N	$\rightarrow N$ tuieffiva $\varphi(\varphi(n)) \leq \frac{n+\varphi(n)}{2}$	
	up per assendo che 3 mo >1 t-c. f(40) < 40	
P(mo) =)	P(P(m)) ≤ m+ P(m) < m	
Questa si	itera producendo per icidusione p ⁽²⁾ (no) < n	10
P (P(160)) =	=> e ⁽³⁾ (u ₀) < e(u ₀) + e ⁽²⁾ (u ₀) < u ₀ e così via	
Quindi c	ci sous $f^{(a)}(us) = f^{(b)}(ns)$, mentre per dovrebbers essere tutti diversi.	
A 6.1	eno per assuraba che $\exists m_1 \geq 1 + c$. $e(u_1) > m_1$ $e(e(u_1)) \leq u_1 + e(u_1) < e(u_1)$ $u_2 \leq u_3$	
	i stamo al caso preceptente.	

 ${\bf Algebra~(Disequazioni~funzionali)~(Advanced)-Massimo~Gobbino}$

(10) €: R → R	€ (x+y2) ≥	(y+1) \$(x)2	
(11) \$: (0, 100) → (0, 11	x) \$ (x+	y) > y + cx + + c-	₽(×1)
	ω) P(;	×+y)> (x) +y	€(€(*))
(3) €: R → R 54	essa equ. d	li sopra + P	(0) >0
(10) P(x,0) => P(-	4) > {(x)²	=> P(x) € L	0,1]
Supp. & (x0) >0, a	llora P(.	xo,y) con y or	ionne produce
(II) · f (x+y) > y f (Ottougo live y->+00	7 (y) = +	x e mando	y -> >00
Ju realtà un sen	e solo : =	J x0 >0 t.c.	f(x0) ≥ 8
• 3 xie R t.c.	P(x1) ≥	7 ×,	
Facao P(xo,y)	con y gran	who : P (xory)	> y + (xo) > 8 y
Mi basta 8y;	2 7 (x0 +y)	er vera per u	granole
· P(x1, f(x1)-x1) e trouc	o un assundo.	
(12) Step 1 lim x> to	\$ (*) = +00	(come prime	a)
Step 2 Dim	\$(\$cx) =+	or (facile con	seguenta del pre(.)
Da qui iu poi è	oue prima	! = > > t - c.	P(P(x0)) ≥ 8


 ${\bf Algebra~(Disequazioni~funzionali)~(Advanced)-Massimo~Gobbino}$

(13) Step 1	Se 3 xo€	IR 6.c.	₽(₽(‰))>0,	allora è come
9	debolu. de	a., quindi		Ja an segue
Step3 0	$(x) \ge 0$ per $(x) \ge 0$ $(x) \ge 0$ $(x) \le 0$ $(x) \le 0$	guo per x	>0 ? _	
e quiu	di l'unica	possibilità	à che sia 1	
, –	Bestive bene xty) ≥ f(x			
			P(x) + (P(x)	-×) ((+(×1)
_		+	# # # # # # # # # # # # # # # # # # #	f(f(xo)) >0
0 \$ (\$)	(x1) >0 pen >0 " >7x pe	x grand	e (-> +00) (-> +00) le	
(4) £: (0, L		(i) Pc	x) + f (y) < =	
		(ii) ×	× + 2 (8) 3	xty xty


 ${\bf Algebra~(Disequazioni~funzionali)~(Advanced)-Massimo~Gobbino}$

Step 2 Iteranion => $f(2x) = 4f(x)$ Step 2 Iteranion => $f(2^{k}x) = 4^{k}f(x)$ Step 3 Provo $f(x) = a \times^{2} x + b = a \times^{2} + a \times^{2$																		—
Step 3 From $f(x) = a x^2 \sim a x^2 \sim a x^2 + b x^2 + b$	Step 1	PCX	<, ×)	=)	+	2(2×) =	42	(*)									
$a (x^2 + y^2) \le \frac{1}{2} a (x + y)^2 = \frac{1}{2} a x^2 + \frac{1}{2} a y^2 + a x y$ $a (x^2 + y^2) \le 2a x y$ $ok k a \le 0$. Quindi $f(x) = a x^2 con a x > 0$ ok . Sep 4 Cambio variabili $f(x) = -xg(x)$. Nella variabile $g(x) = 2^2 eq$. $g(x) + g(y) > \frac{x + y}{2} g(x + y)$ Shep 5 Speno $g(x) > \frac{x + y}{2} g(x + y) > \frac{x + y}{2} g(x + y)$ $f(x) + g(y) > \frac{x + y}{2} g(x + y) > \frac{x + y}{2} g(x + y)$ $f(x) + g(y) > \frac{x + y}{2} g(x + y) > \frac{x + y}{2} g(x + y)$ $f(x) + y g(y) > \frac{x + y}{2} g(x + y) > \frac{x + y}{2} g(x + y)$ $f(x) + y g(y) > \frac{x + y}{2} g(x + y) > \frac{x + y}{2} g(x + y)$ $f(x) + y g(y) > \frac{x + y}{2} g(x + y) > 0$ $f(x) + y g(y) > 0$	Step 2	Iten	-ovsi	oue	S	4	(2 ^k ×	= (4	£ 0	×)							
$a (x^{2} cy^{2}) \le 2a \times y$ Ok se $a \le 0$. Quindi $f(x) = ax^{2} con a \le 0 \in 0k$. Step 4 Cambro variabili $f(x) = -xg(x)$. Nella variabile $g(x) \ge 1$ eq. diventa $g(x) + g(y) \le g(x+y) \times g(x) + yg(y) \ge \frac{x+y}{2}g(x+y)$ Step 5 Speno $g(x) \ge 1$: $x g(x) + y g(y) \ge \frac{x+y}{2}g(x+y) \ge \frac{x+y}{2}(g(x) + g(y))$ $\frac{1}{2} \times g(x) + y g(y) \ge \frac{x+y}{2}g(x+y) \ge \frac{x+y}{2}(g(x) + yg(y) + yg(x))$ $(g(x) - g(y)) - y(g(x) - g(y)) \ge 0$ $(x-y)(g(x) - g(y)) \ge 0$ $(x-y)(g(x) - g(y)) \ge 0$ Step 6 $g(x^{2} \times y) = 2^{k}g(x)$ come prima Step 7 $g(x) \ge 0$ iterando la prima	Step 3	Pro	\sim	₽(x;) = A	× ²	~>	Qa	. Cè	i) (છે ક	grai	h's	,	Par ((1)	Vieu	e_
Ok & a ≤ 0 . Quindi $f(x) = ax^2 con a \leq 0 \geq 0k$. Sep 4 Cambio variabili $f(x) = -xg(x)$. Nolla variabile $g(x) = x^2 eq diventa$ $g(x) + g(y) \leq g(x+y) = xg(x) + yg(y) > xy g(x+y)$ Step 5 Speno $g(x) > xy g(x+y) > xy$		2 (×2	tyz) <	$\frac{1}{2}$ α	(*4	y)2	Ω	120	ι×	2 +	120	L y ²	+ (ax	y		
Step 4 (author variabili $f(x) = -xg(x)$. Nolla variabile $g(x)$ 2' eq. diventa $g(x) + g(y) \le g(x+y)$ $\times g(x) + yg(y) > \frac{x+y}{2}g(x+y)$ Step 5 Speno $g(x)$ 7: $xg(x) + yg(y) > \frac{x+y}{2}g(x+y) > \frac{x+y}{2}(g(x)+g(y))$ $f(x) + yg(y) > \frac{x+y}{2}g(x+y) > \frac{x+y}{2}(g(x)+g(y))$ $f(x) + yg(y) > \frac{x+y}{2}g(x+y) > \frac{x+y}{2}(g(x)+g(y))$ $f(x) + yg(y) > \frac{x+y}{2}g(x) + yg(y) + yg(x)$ $f(x) + yg(y) > \frac{x+y}{2}g(x) + yg(y) + yg(x)$ $f(x) + yg(y) > \frac{x+y}{2}g(x) + yg(y) + yg(x)$ $f(x) + yg(y) > \frac{x+y}{2}g(x) + yg(y) + yg(x)$ $f(x) + yg(y) > \frac{x+y}{2}g(x) + yg(y) + yg(x)$ $f(x) + yg(y) > \frac{x+y}{2}g(x) + yg(y) + yg(x)$ $f(x) + yg(y) > \frac{x+y}{2}g(x) + yg(y) + yg(x)$ $f(x) + yg(y) > \frac{x+y}{2}g(x) + yg(y) + yg(x)$ $f(x) + yg(y) > \frac{x+y}{2}g(x) + yg(y) + yg(y)$ $f(x) + yg(y) > \frac{x+y}{2}g(x) + yg(y) + yg(y)$ $f(x) + yg(y) > \frac{x+y}{2}g(x) + yg(y) + yg(y)$ $f(x) + yg(y) > \frac{x+y}{2}g(x) + yg(y) + yg(y)$ $f(x) + yg(y) > \frac{x+y}{2}g(x) + yg(y)$ $f(x) + yg(y) > \frac{x+y}{2}g(x) + yg(y)$ $f(x) + yg(y) > \frac{x+y}{2}g(x)$ $f(x) + yg(y) > \frac{x+y}{2}g(x$	Ok /	se a	a <<	(x2L	yz) Quiu	≤20 di	z ×y	(x)	= 0	λײ	· C(2U	a e	0	پ	ව	Ł,	
$g(x) + g(y) \le g(x+y)$ $\times g(x) + yg(y) \ge \frac{x+y}{2}g(x+y)$ $Slep 5$ $Speno g(x) > :$ $\times g(x) + yg(y) \ge \frac{x+y}{2}g(x+y) \ge \frac{x+y}{2}(g(x) + g(y))$ $leg (x) + leg (y) \ge \frac{x+y}{2}g(x+y) \ge \frac{x+y}{2}(g(x) + g(y))$ $leg (x) + leg (y) \ge \frac{x+y}{2}g(x) + leg (y) + leg (y)$ $leg (x) - g(y) - g(y) \ge 0$ $leg (x) - g(y) \ge 0$	Slep 4	Car	ubio	00 C	riabil	ù	P 0	×) =	= -	× <								
Step 5 Speno $g(x)$ 7: $x g(x) + y g(y) \ge \frac{x+y}{2} g(x+y) \ge \frac{x+y}{2} (g(x) + g(y))$ $2x g(x) + 2y g(y) \ge x g(x) + y g(y) + x g(y) + y g(x)$ $x (g(x) - g(y)) - y (g(x) - g(y)) \ge 0$ $(x-y) (g(x) - g(y)) \ge 0$ $(x-y) (g(x) - g(y)) \ge 0$ $x = x = x = x = x = x = x = x = x = x =$.				a ('W7	> :	×₩	Ja	Cx+	u 1	
$\times g(x) + y g(y) \ge \frac{x+y}{2} g(x+y) \ge \frac{x+y}{2} (g(x) + g(y))$ $2 \times g(x) + 2y g(y) \ge x g(x) + y g(y) + x g(y) + y g(x)$ $\times (g(x) - g(y)) - y (g(x) - g(y)) \ge 0$ $(x-y) (g(x) - g(y)) \ge 0$ $x \times $								0		- 0	٦٦٠	- U)		2	3		٥٦	
$\times (g(x) - g(y)) - y(g(x) - g(y)) \ge 0$ $(x-y)(g(x) - g(y)) \ge 0$ $x = x = x = x = x = x = x = x = x = x =$							(*+4)) 2	<u>×</u>	<u>w</u>	(0) CX)	+ 6) ১৯:)			
$(x-y)(g(x)-g(y)) \ge 0$ we wondow's crescente deb. Slep 6 $g(2^kx) = 2^kg(x)$ come prima Slep 7 $g(mx) \ge Mg(x)$ iterando la prima	2×9	(X) +	ey o	_] (૪)) ×	26×	;) +y	20	g) 4	· × (g (ų	J) 4	. y (g (*	s)			
Step 6 $g(2^k \times) = 2^k g(x)$	× (3 (x) -	-g(0)) -	y (g	C*)	-g (1	((د	20	>								
Step 7 g (mx) > n g (x) iterando la prima													`a	on a	മാവ	ule	deb	,
SKD 8 SE SEWE, POSSO CASSUMERE Q(1)=1.													Mo	L				
	SIRD 8	76	260	ve,	02Z0q	as	Sam	ere.	(301) =	l .						

 ${\bf Algebra~(Disequazioni~funzionali)~(Advanced)-Massimo~Gobbino}$

Algebra (Disequazioni funzionali) (Advanced) – Massimo Gobbino

Algebra (Disequazioni funzionali) (Advanced) – Massimo Gobbino

[140 2011-3] Text: P(x)=	i l		€(x+y) = y	P(x) + P(₽(x))
[HO 2013-5]	₽: ©>o	→ R	(11) + (4) +.	?(y) > P(xy) P(y) < P(x+y) t.c. P(a) = a
CARINO P: (c	o, l∞) → (o,	too) f		+7)(+(*)+7)
Step 1 Suppour Allora P(>0. P(y) = -0
=> Dim x-> Ma allora	P (~x,x):	₽(0) ≤		₹ (₽ (~×1)
Maudo x -> Conclusione				
Step 2 P CX, Per x <0	y + (x) = 0		(\$(x)-x).	₽ (*)
Step 3	>> \psi (x) ≤ ×		444444	
P (x, -x) => Prends x u	i l	vo 7 Se	\$ (⊀) ≠ 0,	questo è em
qui noti P	·(x) =0 pe	70		x² us quais ura uegativo


 ${\bf Algebra~(Disequazioni~funzionali)~(Advanced)-Massimo~Gobbino}$

Stampato integrate dette tezioni
Step 4 P(0)=0
$P(x,x) = 0$ $P(2x) \leq x P(x) + P(2x) \times \text{unto ueg.}$
Sep 5 Suppositions 7 xo <0 f-c f(xo) <0
$P(x_0, -x_0) = 0$ $0 = P(0) \le -x_0 P(x_0) + P(P(x_0)) \le -x_0 P(x_0) + P(x_0)$
FINE
[2013]
Step 1 Iterarious: $f(x^k) \leq f(x)^k$ $f(mx) \geq m f(x)$
Sep 2 $f(1) \ge 1$ $P(1, a) = 1$ $f(1) f(a) \ge f(a)$
₹ (m) ≥ w
$Step 3$ $P\left(\frac{?}{q}\right)$ ≥ 0 semple \sim MONOTONIA
perdú sous interi
Step 4 Monotonia + + (nxo) ≥ n+ (xo) + + (a*) ≤ a*
ms solito trucco us f (x) < x per x >1
Step 5 In maniera analoga all'esempio analogo
si officue pure $f(x) > x$.

 ${\bf Algebra~(Disequazioni~funzionali)~(Advanced)-Massimo~Gobbino}$

Sevior 2018 - C1 Advanced - Aver
Problemi con punti nel piano (Comb./Geom.)
Problema Se prendo n punti nel piano
Pr Pn, quante distanze vedo come minimo?
$\min_{\text{cont oliminary productions of the production of the produ$
Esempio: se gli n punti sono (1,0) (2,0) (n,0)
Vediamo (n-1) distante oliverse
$A_n \ge \lfloor \sqrt{n} \rfloor$
P3 P6
P2 P2
$A(P)$ - $A_{1}O(p_{1})$ D_{2}
El (Pi) = Aistonne Do Pi e D

Combinatoria 1 (Advanced) – Andrea Bianchi

Combinatoria 1 (Advanced) – Andrea Bianchi

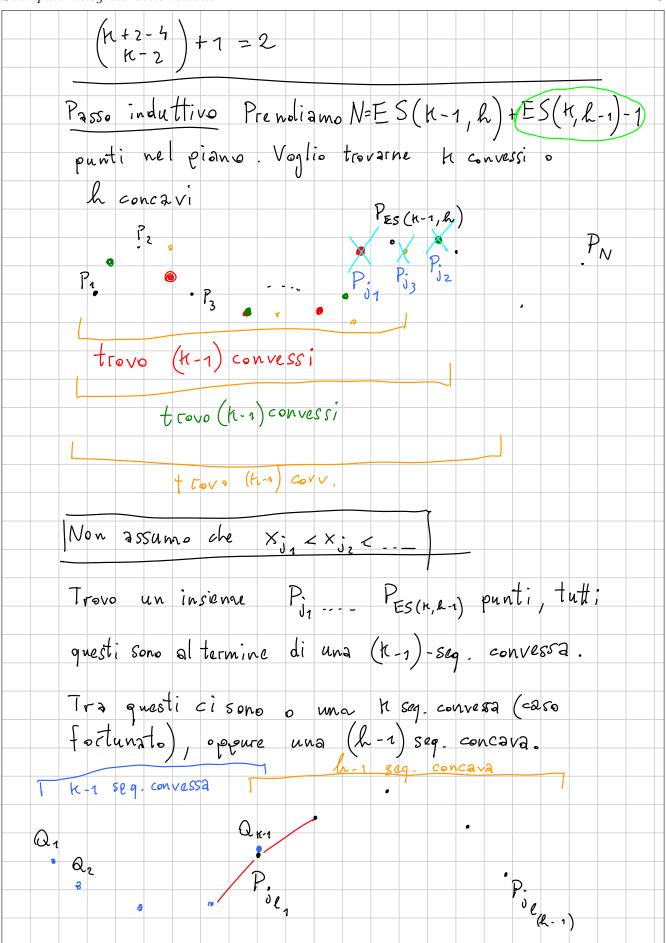
20		Stage Sentor 2010 - Livetto Advanced
Teo Se ho	nymeri reali X1	X alb+1 tutti olistinti,
c'è una sott	osacc. lunga (a	+1) crescente o una
[(ung a (0+1) o	ecrescente.	+1) crescente o una a, b ≥ 0
D(M) Twansipue	Su ϕ . $b=0$	× g è un sotto sacc.
		alect, una 1
Passo induttive	6 6+1	Vogli a trovare in x1 Xalenna una (a+1) crescente o
X 0 X ab + .	Xab+2+1	una (a+1) crescente o una (b+2) decrescente
qui trovo ma	<u>.</u>	
(lo+1) decrescente/	T	ovo att succ. lunghe
(X)O. XK OX	2	
qui tour ma (6+1) olecrescute	Co	+1) decrescenti, tutte
(6+1) olivresante	C	on ultimi termini
	Ol	iversi tra loro
Considero la :	Succ. X K ₁ ,	×K at 1
Se sono stotlm	nato, non è cresc	cente, ma allora
J XKx >	Xxh+1 ma ella	en la succ. lange 6+1
che termina	in Xx. ove e	ssere allungata
	na tr	
P- 11a		(≥3. n punti ne (
Troutiens un po	pro ofference f	1 de 2
bigno ho K	allineali. Uu	ante distanze almeno?
Sia Lil nº	oli distanze c	the occortono.
Contiamo i tria.	rgeli isoscali; s	sono al più $\binom{n}{2}$. $(k-1)$:
	0	

Combinatoria 1 (Advanced) – Andrea Bianchi

Stampato integrate dette tezioni	
infatti ogni zopoia di pti la uso al max (ti-1) volte come base.	
come base.	
d ₁ de distanze che occarros. X j = n' di pti a distanza ol j da P; , j \le l i \le n.	
a distanta of; ola P; ; sel i en.	
H: 5x:- N-1	
$\int_{-1}^{2} \left(\frac{1}{h} \right) = \frac{h(h-1)}{h(h-1)}$	
(k-1) (2) 2 Sensen / ((n-1) 1/1 [(n-1) 0 - 1]	
(Xij) = n. tr. isoseli > l. n. "FJL"	
$\forall i \geq x; j = n - 1$ $(k-1) \binom{n}{2} = (k-1) \frac{n(n-1)}{2}$ $(k-1) \binom{n}{2} = n \cdot 4n \cdot \text{isosceli} > l \cdot n \cdot (n-1) \binom{n}{2} = n \cdot n$ $(n-1) \binom{n}{2} = n \cdot 4n \cdot \text{isosceli} > l \cdot n$	
$\frac{\times^2 \times}{2}$ e conversa $(K-1) \ge \frac{n-1}{L} - 1$	
$l \ge \frac{n-1}{K}$ lineare in N	
Per n= k² ho la configurazione {1,-h}x {1,-h}	
In questa conf. quante distanze vedo? Tante	
quanti gli interi 1 = m = 2 n che si possono scrivere	
come somma di due quadrati. Quali interi positivi	
che si scrivono come somma	
oli 2 guadrati?	
$1 \le h \le 2h$	
β α α_1 α_2 β_4 β_5 β_5	
$h = 2^{\alpha} \cdot p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot q_1^{\beta_1} \cdot - q_5^{\beta_5} \text{con } p_i \equiv 1 (\text{mod } 4)$ $e q_i \equiv 3 (\text{mod } 4).$	

Combinatoria 1 (Advanced) – Andrea Bianchi

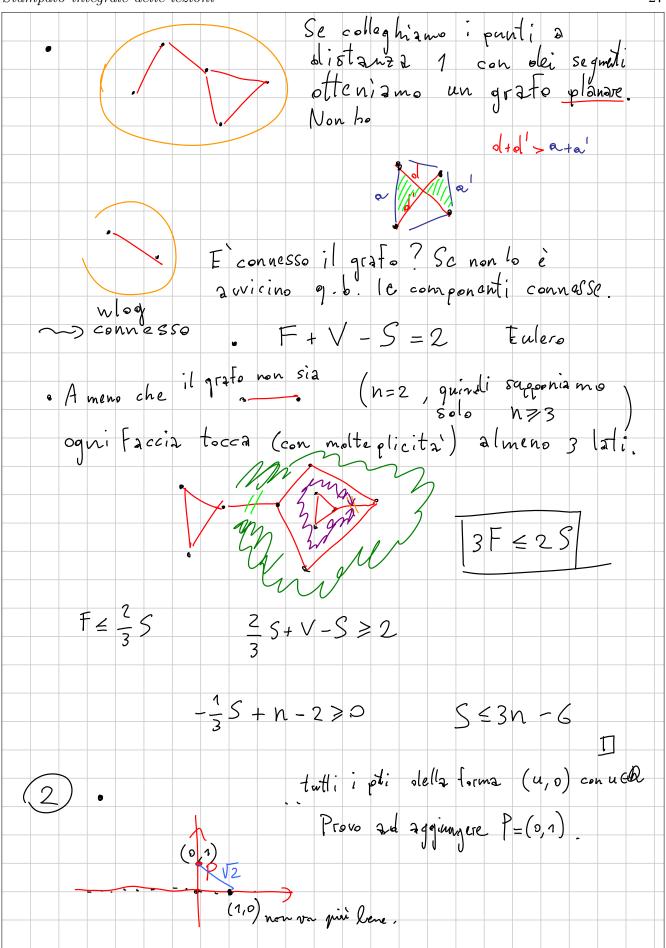
Alberta $h = x^2 + y^2$ se e solo se tutti i β i sono pari Non abliana planera tutti i naveri da $1 \sim 2 n$. Esampió non ha $i \equiv 3, 6 \pmod{9}$. $\rightarrow 3$ ha l max $2n \cdot \left(1 - \frac{3-1}{3^2}\right)$. Analog amente per i $[7, l'11]$.
Non ablians observed tutting i noneri da $1 - 2 n$. Escripto non har $i = 3$, $6 \pmod{9}$. ~ 3 hard $max 2n \cdot \left(1 - \frac{3-1}{3^2}\right)$. Availog smeate per $i \mid 7, l \mid 11$.
Esempió non har $i \equiv 3, 6 \pmod{9}$. ~ 3 ho ~ 1 ~ 3 ~ 1
max 2n. (1 - \frac{3-1}{3^2}). Avalogemente per : [7, l'11]
Su larghe scale ho al massimo
$2 n \cdot \left(1 - \frac{3-1}{3^2}\right) \left(1 - \frac{7-1}{7^2}\right) \left(1 - \frac{11-1}{11^2}\right) \cdot \cdot \left(1 - \frac{p-1}{p^2}\right)$
diventa piccolo a pincere!
Problema aperto capire con che velocità cresce
alauvero C.n. her enalch
alauvero Lin An Con per qualche log n Cositivo
Happy enoling theorem (Erdős - Szekeres, 1935)
Per soni K>2 esiste un Nabbastanta grande
$N = \begin{pmatrix} 2k - 4 \\ k - 2 \end{pmatrix} + 1 $ basta per cui comunque
si prenolano N punti ne l piano, a 3 a 3 non
allineati, ne esistono K che formano un
poligono convesso.
Caso particulare K=4 (Esther Klein 1933)
Per $K=V$ basta $N=5$
Da questo seque in realtà il teore ma: pre ndiamo Nounti

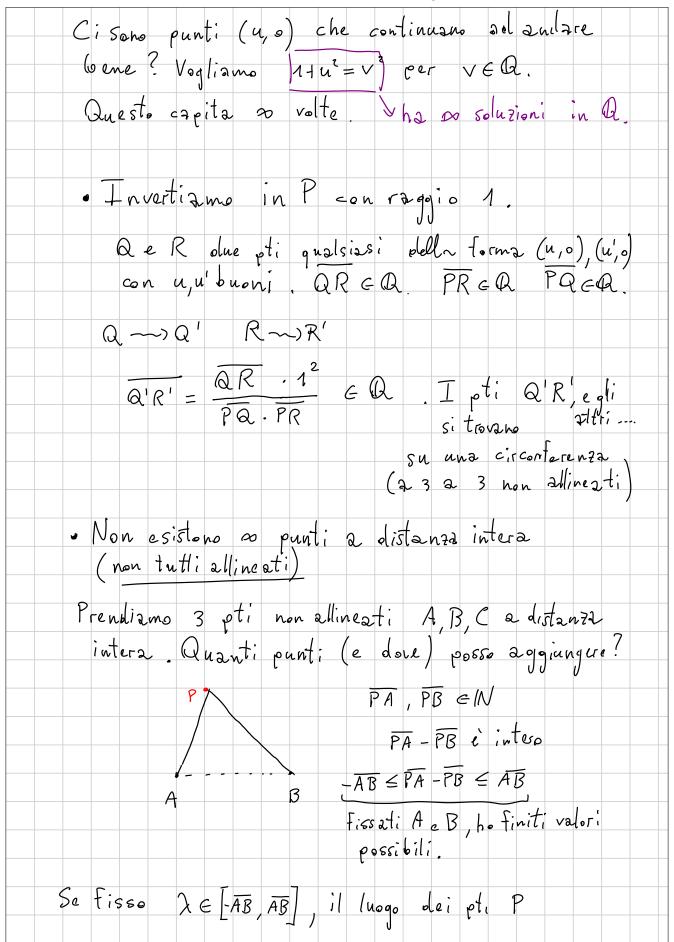

Combinatoria 1 (Advanced) – Andrea Bianchi

$\frac{impato in}{ }$						7 -				,		4.			SD	0	P (: }	
		ano																	
un	. د	olor	e	SC	ett.	_	ιca		2 (اه!	rí	}	Con	٧.	1	Co	n C	• 5	
												1	Pajc,	5		P,Q	,RS		
													onne	WC -		Con	cove		
											,					4			
												6		•/		•		•	
$\int \mathbb{R}_{a_{k}}$. C 4 11	ci	oli	Co	che		0	٨/_	,	mal	- {_	γ(ant	e	ris	e e	H0		
Ran	Seg		_+	٠,	,	د دا /			١,	,.,		-	10	C	- IA O	٥	di		
gı	P?	3 L 4	me i	()		Ch	\	1/4) 50	, ,	-Or O	10	16	٥	",		001		
		0.0	U			λ/			. +			0		1	<u>،</u>	al	lars		
un	1 ^	Siev	nc	الماط	٨	IV,	e .	em(2711		on '	2	£) (6 (' /			C	hv
es	ist	ie	un		4 9	_ ()	Ce	n	A	=	K	c	/	4	mor	10Clo	mJ	ico
ا ا	ખ્યા	e			B	U				1/2	} =	h			3	mod	tom	COL	re.
								1							ļ				
)a	90	i s	sequ	u,	M	, لڏ ,	١.	Cov	n 4	n A	Sli	ma	و م	ا م م ز ا ا	ore.);	pe	Γ	
N	g	rpan	راه ر	tr	o V O	1 \	0	5	Pu	wti		on	tent	ťe,	e 11	9u2	tern	e terne	
Ce	nC	ave		€ક	sur	صاط ا	,	0	11	p	un l	.1 0	Ne	ไน	.Ja	le	9 ua	terne	2
€ €	n V	ess e	2	~		t(-	8,0	No	C	oh√	ess	Ю.							
+1	5	Γ, ζ	si i	hio	ma		ci	-001	ché		16	LIA.	یه م	So	1 6	006	lem	9	
14,		l, q		24	() l	5		0	C .C		1	n	ر د ز	600	Care	\h 0	
																	3416	/	,
E	rd	ő S		olico	le	qu (este))	low	ie	al	t	Co (2m	9.				
Pre	wol	e	N	o u	.nt i	n	el	છાં ને	lno.	F	ودكا	. le	C	00 F	ina	te	cail	હડાં ર	ne
in	m	ماهه	cl	l re	tut	te	le	1 980	isse	S	୍ ଶନ	.e	divo	ug l	e	tü	tle	esia le	
٥٢	din	nate		ડાંગ્રા	~o	ol	ivec	Se	, (×, ,	у, `) , _		()	Χ,, ,	ر. رير			
		nate						_		, b	1	,		(̈́Ρ́	ν", Ν	,		
c	οV	· >	< 1 ⁴	< ×	2 <		'	<	\ N	•									

Combinatoria 1 (Advanced) – Andrea Bianchi

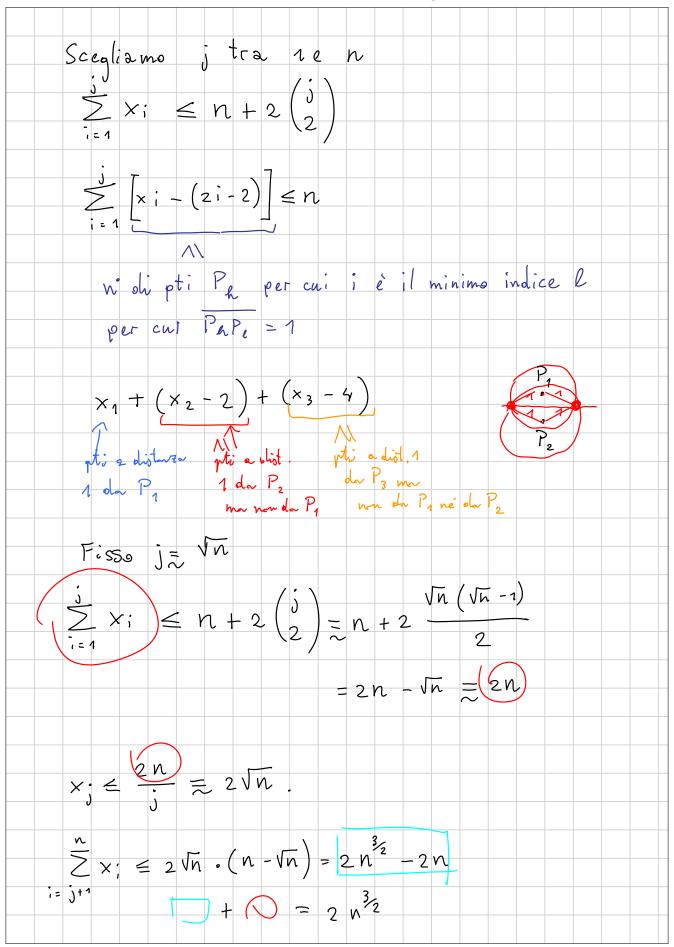
Dicia	mo	ch	.e	u	v 9	sol	to s	agne	en 7 á	ົາ	P	1	P;2	, -		P; h	,		
(i, <	. < i	h)			è	COM	1 Ve 9	ssa_	5	e	i 5011	ra f	por	ti zen	inc (;	crema	enla	li	
y ; 2 - × ; 2	· Yi.	1	<	yi:	} - (Jiz	_ <			_	<					-			
															i h -	•			
è con	ca '	<u>va</u>	se		ز ۲	g op	in	,сг,	20	ono		dec	Te S	ent	Ϊ.				
Ese	mpi	<u>.</u>				,							j						
sottosegu conves	ewza sa	×	•	(0			,	<u>•</u>)	3						X				
Sottosegu			×			χ			(9)	9	>	(
I otra.								_				(.				a.C.			
Entrav												0							
ES(e c	he	
YN.	puc	ti	Pi	(×,	, y ,)		P	√ =	(×.	v, y.	~) '	es	ifte	. u	เทฮ	_		
K-s off a																	∕a .		
Tesi	ES	(h	,h)	es	iste	,		<u>_</u>	(11	:+h K -	- L 2	')	+ 1	!				
Indus	i one)	su	k	e	. h	(ind	u Z ioi	re 1	m K	+h	/ iv	- rol u	Zion	e si	ı h)	
Passo	6 a.	se	h	<i>,</i> =	2	,	K	gu-	lsi.	, sú	•								
Bast:	gNo	2	, r	um	; ' :	Fà	inn e	y %	eme	ore	una	,	2 -	Segi	nen	5 9			

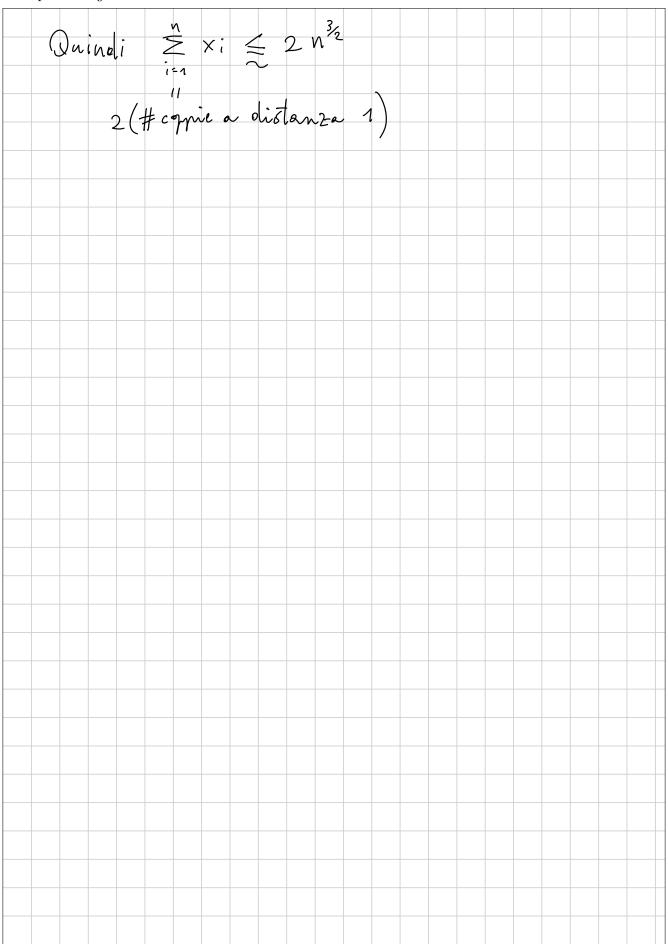

Combinatoria 1 (Advanced) – Andrea Bianchi


Combinatoria 1 (Advanced) – Andrea Bianchi

La lotta tra i due rapporti incrementali determina se c'è una ti-seq. convessa » una h-seq. concava
Es(h,h) possions prenderlo pari a
$ES(h-1, k) + ES(k, k-1) - 1 = \binom{k-1+k-4}{k-1-2} + 1$ $(k+k-1-5) + (1< +k-4)$
$+\left(\frac{k+k-1-5}{k-2}\right)+1 - 1 = \left(\frac{k+k-5}{k-2}\right)+1$
Problemi per la pausa 1 n=3 punti nel piano. La minima distanza
tra 2 punti è 1. Allora ci sono non più di 3n-6 coppie a distanza 1
2). Dim. che esistono 20 punti del piano a distanze ED, non tutti alline ati
Dim . Che // so panti, distanze E Q,
a 3 a 3 non allineati
o Dim. che se » punti del piano hanno tutle distanze « IN, allora sono tutti all'inerti.
Ci sono 66 punti a distanza
Ci sond ≤ 6 punti a distanza 1 da P (altriment; 1 non è la min. distanza)
COPPIE ORDINATE 2 distanza 1 < 6h H / NON ORD. / 2 3 M

Combinatoria 1 (Advanced) – Andrea Bianchi


Combinatoria 1 (Advanced) – Andrea Bianchi


Combinatoria 1 (Advanced) – Andrea Bianchi

con PA-PB = 2 e un ramo di iperbole (2=0 viene l'asse di AB, 2= ± AB viene um suivotta) Tutti i panti P della collezione giacciono su una tra (2 AB+1) curve (rami di iperbole o rette). Iolem per BeC, ogni P giace su una tra 2BC+1 curve determinate da BeC. Un'iperbole (retta) con asse focale = AB non può coincidere con un'iperbole /retta con asse focale = BC. (Per una retta, nel caso dell'asse prendo la perp., nel caso sia una semietta, prendo la retta o cui, apeartiene). Supponiamo che ABKBC (altrimenti uso AC) Se ho n punti nel piano, ci sono n 3/2 coppie a distanza 1 (= vuol dire = a meno oli piccole perturbazioni del RtS che vilascio
(2=0 viene l'asse di AB, 2=±AB viene uns saisothe) Tutti : panti P lella collezione gia cciono su una tra (2 AB +1) curve (rami di igerbide o rette). Idem per BeC, ogni P giace su una tra 2BC+1 curve determinate da BeC. Un'iperbide (retta) con asse focale = AB non può coincidere con un'iperbide /retta con asse focale aBC. (Per una retta, nel caso dell'asse prendo la perp., nel caso sia una seminetta, perendo la retta a cui, appartiene). Supponiamo che AB XBC (altrimenti uso AC) Se ho n punti nel piano, ci sono ≤ n³2 coppie a distanza 1 (≤ vuol dire ≤ a meno
Tutti i panti P lella collezione gia cciono su una tra (2 AB+1) curve (rami di igerbole o rette). Idem per Be C, ogni P giace su una tra 2BC+1 curve determinate da Be C. Un'iperbole (retta) con asse focale = AB non può coincidere con un'iperbole /retta con asse focale = BC. (Per una retta, nel caso dell'asse prendo la perp., nel caso sia una semietta, prendo la retta a cui appartiene). Supponiamo che AB X BC (altrimenti uso AC) Se ho n punti nel piano, ci sono \leq n\frac{3}{2} coppie a distanza 1 (\leq vuol dire \leq a meno
Idem per BeC, ogni P giace su una tra 2BC+1 curve determinate da BeC. Un'iperbole (retta) con asse focale = AB non può coincidere con un'iperbole /retta con asse focale = BC. (Per una retta, nel caso dell'asse prendo la perp., nel caso sia una semiretta, perendo la retta a cui appartiene). Supponiamo che ABLBC (altrimenti uso AC) Se ho n punti nel piano, ci sono \leq n ^{3/2} coppie a distanza 1 \leq vuol dire \leq a meno
Idem per BeC, ogni P giace su una tra 2BC+1 curve determinate da BeC. Un'iperbole (retta) con asse focale = AB non può coincidere con un'iperbole /retta con asse focale = BC. (Per una retta, nel caso dell'asse prendo la perp., nel caso sia una semiretta, perendo la retta a cui appartiene). Supponiamo che ABLBC (altrimenti uso AC) Se ho n punti nel piano, ci sono \le n ^{3/2} coppie a distanza 1 \le vuol dire \le a meno
2BC+1 curve determinate de BeC. Un'iperbole (retta) con asse focale = AB non può coincidere con un'iperbole /retta con asse focale = BC. (Per una retta, nel caso dell'asse prendo la perp., nel caso sia una semiretta, prendo la retta a cui, accartiene). Supponiamo che ABLBC (altrimenti uso AC) Se no n punti nel piano, ci sono N ^{3/2} coppie a distanza 1 (vuol dire a meno
Un'iperbole (retta) con asse focale = AB non può coincidere con un'iperbole /retta con asse focale = BC. (Per una retta, nel caso dell'asse prendo la perp., nel caso sia una semirette, prendo la retta a cui appartiene). Supponiamo che AB L BC (altrimenti uso AC) Se ho n punti nel piano, ci sono N ^{3/2} coppie a distanza 1 (= vuol dire = a meno
coincidere con un'iperbole/retta con 255e focale = BC. (Per una retta, nel caso dell'255e prendo 12 perp., nel caso sia una semiretta, prendo 12 retta a cui apeartiene). Supponiamo che ABLBC (altrimenti uso AC) Se ho n punti nel piano, ci sono N ^{3/2} coppie a distanza 1 (= vuol dire = 2 meno
(Per una retta, nel caso dell'asse prendo la perp., nel caso sia una semietta, prendo la retta a cui appartiene). Supponiamo che ABKBC (altrimenti uso AC) Se ho n punti nel piano, ci sono n ^{3/2} coppie a distanza 1 vuol dire a meno
(Per una retta, nel caso dell'asse prendo la perp., nel caso sia una semietta, prendo la retta a cui appartiene). Supponiamo che ABKBC (altrimenti uso AC) Se ho n punti nel piano, ci sono n ^{3/2} coppie a distanza 1 vuol dire a meno
supponiano che ABKBC (altrimenti uso AC) Se ho n punti nel piano, ci sono coppie a distanza 1 (= vuol dire = a meno
supponiano che ABKBC (altrimenti uso AC) Se ho n punti nel piano, ci sono coppie a distanza 1 (= vuol dire = a meno
Se ho n punti nel piano, ci sono $\leq n^{3/2}$ coppie a distanza $1 \leq vuol dire \leq 2 meno$
copoie a distanta 1 (= vuol dire = a meno
copoie a distanta 1 (= vuol dire = a meno
copoie a distanta 1 (\(\nu
oli piccole perlurbation del 1871s che vilascio
per escreizio)
x; = n' oli pti a distanza 1 ola P;
$\{P_1, \dots, P_n\}$. $\{P_1, \dots, P_n\}$.
Ciem interessation discussion de pel tipo
Sièmo interessati a disagnaglianze del tipo x; \leq ?
i = 1

Combinatoria 1 (Advanced) – Andrea Bianchi

Combinatoria 1 (Advanced) – Andrea Bianchi

Combinatoria 1 (Advanced) – Andrea Bianchi

C2 Advanced Lucellac
Metodo Probabilistico
Cosa è una variabile alectoria? L'ina cosa che prende un poi di volori un poi di probabilite "
Esempio: Se prendiemo un dedo non truccato e chiens Do la variebile celecatoria relativa HUC/1,-,64 vale IP (D6 = K) = 1/6
Suppositions the injector valor Siens in N. Sie X V.a. Dengue $\sum_{n=0}^{\infty} P(X=n) = \sum_{n\in\mathbb{N}} P(X=n) = 1$
Unque $n = 1$ $0 \leq S \leq p \leq S \leq p \leq n$ $p \leq S \leq p \leq S \leq p \leq n$ $p \leq S \leq p \leq S \leq p \leq n$ $p \leq p \leq p \leq n \leq n$ $p \leq p \leq p \leq n \leq $
=552: Una conditione necessarie e lim 1P(x=n) = 0
ess3 (che breve essere la prima) P(x=n) e[0,1] fnel
oss4: Deto $A \subseteq N$ vele $P(X \in A) = \sum_{n \in A} P(X = n)$
Esempis: considerant la X di $essi$. Evoglio $P(X \in \{n, n, a\}, p, z\}) = $ $= \sum_{n \in \mathbb{N}} P(X = 2n) = \sum_{n \in \mathbb{N}} \frac{1}{2 - 4n} = \frac{1}{2} \frac{1}{4} = \frac{2}{3} \left(1 \right)$
Def: Data X veriebile alle tota definisco il suo valore alteso come IE[X] = 5'n IP(X=n) E[0, +6] * C'e' +00

Combinatoria 2 (Advanced) – Luca Macchiaroli

Stampato inte	egraie a	lette	tezio	ni															33
<u>0</u> 55;	Se	X	€ C	ای	t	إت	>	IE (X]	وے	st	(: +0	6)				
Esenpiro s																			
OSS? S	e >	< >	2 Y		V.0	١.	-1	> U	E/	XJ	>	(E)	77						
Esemplo C	oncre to	p: L	enc	210	dve	d	ed.	7	/=	prn.	o V	elsz		χ.	= Son	istine (ں تبط	elor:	
×	75	>1	7(E	ĹΧ,] >	IE C	Y]												
Per of)	(9)			ורכס	<u> </u>		Ч		Ц	10	. 10		/. s	/ 、	\cap	<u></u>	M/)	
(Pez g			_د	>	e (u	e	NO.		vea		æji	nıt.o	re o	<i>x</i>	` .	4			
Indip	ender	to c	J. 2	2 1	V.a														
Indip Intu	tive	men l	le O	e	H	n,la	(c)	1	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	P()	(=)	$n \mid I$	5	k) ^s	= -)()	X =	n)	
For	o il	Vd -	lore H	- dr Д (γ) (he k	on a	Gem.	bie C	le 1	di3	(Z)	utior —	ه م. ارا	k > V c	۲ <u>-</u> ۱۱	ıDA	10 12)
tozmel	12/v	-C	. V ≀ ∆ }·	1/1. V C I	ر ر) ت		N (xe	LT Aiyo	LX SB)	EM	, 7t	ן כו	_	VP (16	/ - 1	ır (į	7 C D	_
<u>ess</u> :	" (^	(6/	` t	16	<i>3)</i> -		P	Cye	(3)										
Quind	', X	74	inc	hpen	dent.	٤	<u> </u>	4/	1,13 s	EM	_IP	(X	EA	170	£B)	=(PCX	(EA	1) _
Conme:																			
Se >	Fed			Son.	0 1	indi	per	deni	Si -	PD		LX	(+)	//2	-112 (/X	Jt	1627	4
Vim:	100	Le.																	
Lemme p	iv f	140		Œ	ľΧ	(+	77	=	E	ĽΧ	Je	:1E	LY	7					
			ļ, I																
Cosa	-						L 6						\						
Diana	he		//					_						->	N				
X(w)	^ _							gi	n cie	ne			<u>ــ ۲</u> ـــ		1 71				
(Se								-1	(c) :	= { a	e-,	4:	f	ej q		})			
1 0 0																/			
Allo:	ze (Χt	7)	(U	: (ا	= /	×(.c	<i>V</i>]-	t Y	(a)									

Combinatoria 2 (Advanced) – Luca Macchiaroli

01	Stage Sentor 2016 - Livetto Advanced
Dan Lemme + flys"	
0 0 0	n
$E[X+Y] = \sum_{n=0}^{\infty} n!P(X+Y=n) = \sum_{n=0}^{\infty$	Sin P(X=K, Y=n-k) =
$= \sum_{n=0}^{1} \sum_{k=0}^{n} n \mathbb{P}(x=k) \cdot \mathbb{P}(Y=n- x x=k)$	= 1 n P(x=k) 1/4=n-k/
Mr.= N-h	9 % 0 00 00 00 00 00 00 00 00 00 00 00 00
$= \sum_{N=0}^{\infty} \sum_{m=0}^{\infty} (m+1) P(x=k) P(y=m x>k)$	= > (m+h) P(x=h). M=0 N=0 P(y=:m'/x=h).
$\frac{1}{m=0} \left(\frac{1}{m=0} \right) \left($	KIP(x=K) 5 1P(Y=m/x=K) =
P(Y=n)	1
= = m [P(Y=m] + = KP(X=K) = N=	[x]+IECy]
Tutto quello che abbieno fatto fun se al posto di N Cr melto un qua	luque ASIR, muerebile.
Disignegliante de Markor	
Se x 20 V.a. e c>0. Al	loro
$(P(XZC) \leq \frac{15C}{C}$.X)
Dim! Itxxcy = { 1 se x > c se x < c	
Vale CIIxrey & X perché	> × > c
Allora IE[X] > IE[C I(x)c] = 0	C. IP(x > c) + O. IP(x = c) = c(P(x > e)
=D (P(X > c) & (E[X]	
Def! Si dice Verante di X Vez (X):= 1=	[x-1] = [x] = [x] - [x]
4HS = IF[x2] - 2 IF[x]2 + IF[x]2	

Combinatoria 2 (Advanced) – Luca Macchiaroli

Stampato integrale delle lezioni	35
Disuguegliente de Chehisher	
X v.a. (me on sidernemo ancoree X20) e C>0	
$\mathbb{P}(1\times -1\mathbb{E}[x]) \geq C) \leq \frac{\mathcal{V}_{e}(x)}{C^2}$	
(C^2)	
955: [X-1][[X]] > 0	,0
MALKOV SU [X-1][X]] (e c ² >0
$\frac{955!}{ P(1 \times -1)[[X]] \ge C} = P(1 \times -1)[[X]] ^2 \ge C^2$ $\frac{1}{ P(1 \times -1)[[X]]} \ge C^2$	$\frac{1}{C^2}$
	Daze ka
Colculore i velore ettes del # di pt fiss, in un di {1, -, n's Xi6 = { O obtainenti!	is fillipolation
XIGF= 10 se punto fisco di 6	
$X_i: S_n \rightarrow \{0,1\}$	
$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $	1 1
$\mathbb{E}\left[X_{1}t,\ldots,tX_{n}\right] = \mathbb{E}\left[X_{i}\right] = $	
Esempi: 10	
le (n Grzofo bipertito e a sono ali	neho h2-h+7
let: Tes: 7 perfect meto	hing.
Solly r'coppie disgustie in mod zondom X-={1 see callegat.}	
Se avessi Six, =n une volte cevre	, vinto
	n+)=n-1+=
Enter Delnero no velto e n	

Combinatoria 2 (Advanced) – Luca Macchiaroli

						1	1	1	I										arreceu
Es 2	n	nume	24	Z	læd	li	\(\frac{1}{2}\)	ja,	/ =	0		e i	ron	Sono	, ti	.Ut:	0.		
	Tesi:																	6,61	<0
E	- r=1	bibi	+1]	= ,	51	16	[6,7) 't1_] =	nIF	[b	162.]=	n·.	n C	a.: a n-1)	3	•	
	2 < -1 = -1	Oi Oi	a ₅	2	<u>_1</u> n-1		<u></u>	, ai)2-	\(\frac{1}{2}\)	a;2)	7	- 3	[o;1	<	2			
De	qu;	e Ex	25Y ,																
Nove	tec	inice:		II	1C	2	01	7			_								
1 100	ino teme	. 1.0	<i> </i>		· ./	12 7	+												
Dir	nostre:	con.	she oSc	J 2 h2	7	S	ing	ene rente	4 1	nezs D	06e No ZS	t.	c.	oln S	reho	29	n 17	pers	ione
	re lter																		
CV)	ne Wei	rla	in ×	> ۲۰ -	= {	1		se	ie E		ed.	eso	tere	nte	2 @	ım G	Sen	in (S
Vogli	, de												, с	yund	1 n	y by	ما کام	2.	
EE	7	> 2										•							
W. C.	5'x;]={	5	E	ر ۲]:	=5	7	ρ.		000 2 /) p [:]	1-	-ρ) ⁹	98 :	:n[(126 2	(1-p,)9%
(03	ρ	3 (1	-ρ)	998	>	 201	7		f	ر <i>ح</i> ر	<u>3</u> 001			,					
	2).	(1001)3	. (]	<u> </u>	3) 99	18	}(2	00)	((<u>3</u> 201).	1	(00	3	l <i>©</i> 01	
100	o.99	- '	1	3	? -	1 917										<u> </u>	3		
		(10	~ IJ			26 T													

Combinatoria 2 (Advanced) – Luca Macchiaroli

Dianipato integrate dette tezioni	51
$n > (000)$ $(2n+17)n(n-1) = 2(n\pi 1)^3$ fete: l onth $9n^2 = 23n + 2$ che e vero!	
#DIE [\(\tau \cdot \) \(\tau \cdot \) \(\tau \cdot	
(4) G grefo con n vertici e gredo nedro d>1.	
=D. Fanticzicce con colnero to vertici.	
Pando agui vertice con probabilité p. 1E[#vertic]=np	
Considero in la to. Quel è la prob che entrembi i vertici	
[E[#let, t.c. c1 Sono entrembs: verbici] = p2. #leti = 1 ndp2	
Tolgo en vertice per of ni leto con due vertice presidenti] $= \frac{1}{2}nd\rho^2$ $\rho = \frac{1}{2} = 1$ $= \frac{1}{2}nd\rho^2$ $= \frac{1}{2}nd\rho^2 = \frac{1}{2}nd$	
Dze prezix. zestieti y formeno un lanticzza n J anticzzae an almino z vertra.	
5) Stesse oso, sente l'youres 221, e 5 1-41	
Consideriens une permiterione zondom of little prob = 1/n!)	
Sie A; leventio o(i) e o(3) y vicino ed i =0 IP (Ai) = 1-41	
$X(\sigma) = \sum_{r>1} \frac{1}{166A}$	

Combinatoria 2 (Advanced) – Luca Macchiaroli

Stuge Scient 2010 Liberto Havanieca
Se Jobic X(5) > m = D J enticrica grande m
Se J o b.c. $\times(5) \ge m$ ob Funtionicae grande m Bastra [E[X] = 5, 1 Jit1
15[x] = E' 15[Ioc1A3] = E' 1P(A,) = E' 1P(A,) = E' 1.
Dec Per Am I I I I I I I I I I I I I I I I I I
055: Per AM-HM 5, 1 2 n
d7.1
6) USAMO 2012.6
$n \geq 2$ \times_1 , -1 , $\times_n \in \mathbb{R}$ on $\times_2 t$ -1 $\times_n = 0$ $\times_1^2 t$ -1
VASAI, -, ny definiens SA=S'X;
A>O Felpi 2n-3 sottoinsiem A on SA>A.
7) RUSSIA QUALCOSA
Ad pam Zoanto nince plane una talotto.
Al ogni zagatto piece elnero una tofetta. Dimostrate che IS con almeno la netie delle pezsone nel mondo
t. C. edgr. regretto in S preccions un nunero disper de reporte in S
8) 1170 1998. gieloso
In une competitione a sono or pertegnenti e la guida
Con b= 4. Ogn gnda dre V o X + partegate.
Segueno de 4 appre de quidro: # pertegenti con la stessa "vala" E « N. Dinostrere de K > a(b-1) 26
26
9) (quesi) MO 2014.6
n zette in posi genezale. Dinostre che pez n est grande
Si posseno colorare alreno vin sette de viole in modo tale che nessina segrone finte abbie titi i bordi colosati
Vall che Messine Zegrone finite abbie luti i bordi ColoZeli
(Note: pinti pertioni per ovn con c<1)
Fetelo VC = 2

Combinatoria 2 (Advanced) – Luca Macchiaroli

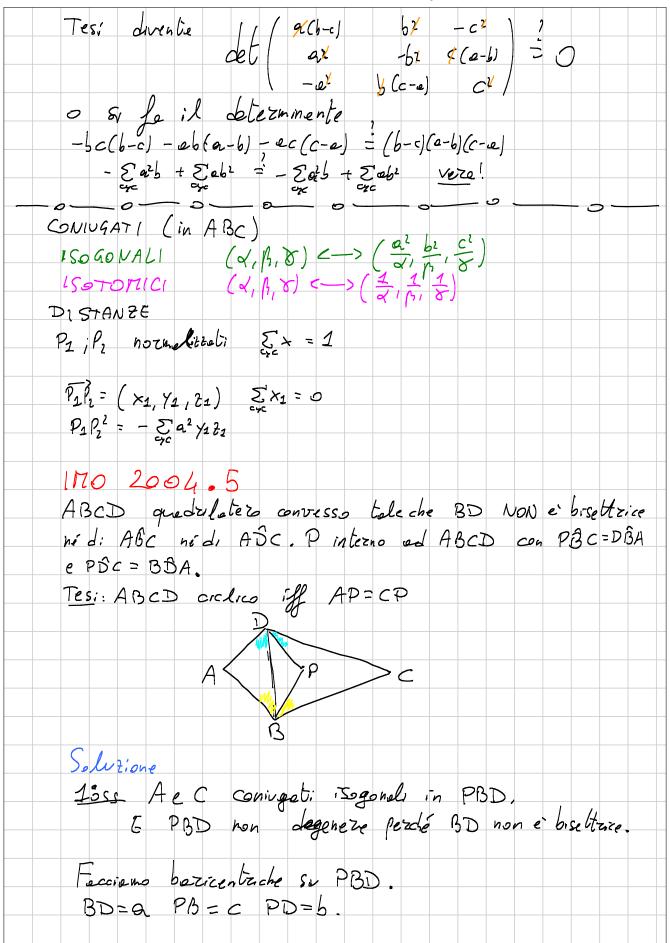
Stampato integrale delle lezioni	39
6) x: O(11,-,ng) -> (un poid velozi)	
XCA) = SA (SCUVERO SA)	
lE[SA] = O perché	
SA + SAC = 0	
$\#S_A t.c. \Rightarrow \lambda e' = \frac{2^{n-3}}{\lambda^2}$	
over P(Sa > 1) & I	
	=-SA.
Dinque basto IP(ISA()) & 4	
Oza vorze: usaze Chebisher;	
per Chebsher	
per Cheb, shev $ P(SA \ge \lambda) \le \frac{\text{Ver}(SA)}{\lambda^2}$	
25 66 1 65 562 7/ 25 652 7	
Vez (SA) = (E[SA](-1E(SA]2)	
Oze $1 = \frac{1}{2n} = \frac$	$\sum_{i \in A} x_i x_3 =$
	i, sea
$= \frac{1}{2^{n}} \left[\sum_{i=1}^{n} 2^{n-1} x_{i}^{2} + \sum_{i \in S} 2^{n-1} x_{i}^{2} x_{5} \right] = \frac{1}{2} \left(\sum_{i=1}^{n} 2^{n-1} x_{i}^{2} + \sum_{i \in S} 2^{n-1} x_{i}^{2} x_{5} \right)$	- [x,2) =
P(15a12 X) & 1/2 che e quello che valevar	no.
	<i>ţ</i> \
7) Sceglieur on probabilité 12 (led in made indipenden Zagetta, e prendiamo Cilli r refleti a ai ne	le) eghi
on # dr-spers.	110000000

Combinatoria 2 (Advanced) – Luca Macchiaroli

40			Stage Sentor 2018	– Livello Aavancea
Cho G =	= # grals	B= 46	2040	
W / # 20g	prese = G			
	1 3 2			
15/47,000	12: 1705.7-	10/ 0-	1 - 1 B	
IL G Cup U	177: presi]=5	, Ir(press)	-2, 2 = 2	
	cege	Ur .	zefoil.	
IETH MORE	sone pese] = Bt	6		
12/19/19/20	2			
			1 /	13+6
songue J	Onfigurations in	Cu he	pano elnen	2 '
8) Conte Ora v	estent zanon	(In me	evière equiposse	bike)
Ora v	ed x #v	e # x	· ' '	
Sappiers V	Ttx=h			
I I I I I I I I I I I I I I I I I I I		a dia chi	cornadono s	2 2
	i i sono I g	March Ole	Offici Cons 8	
101	$\begin{pmatrix} x \\ 2 \end{pmatrix} \stackrel{?}{\geqslant} \begin{pmatrix} b - 1 \end{pmatrix}^2$			
6=> V-2 4 X	(2 - (Vex) > Cb-1)2	3 2 LI		
	1 1 4	5, 2		
e=> v-1+ x	2 > 6+1			
170 22	2 (6-42 Charle	1241	navio Q M-A	$n \neq \vec{A} = $
7 00 0 4	X 7 4 6 2	7	proce servis 1,	
	. 7		. 7	
1.	21 = 15	$\frac{1}{2} \left(\begin{array}{c} V' \\ 2 \end{array} \right)$	+ (×) > (b-	1)2
9	1/5	- (()		
obve 1 2.	1(d,h, b) on	2/1 gude	i 8 perteg	portre e 1
	of the state of th	Lets la	stosso vola	$\langle \hat{Q} \rangle \langle \rangle$
	, VIII	70		
IDIZVI	(b)			
	21			
	or (b-1) 2	7 - 19	(b-1) Toc	- (
	4 60	1) - 01	2/	jo
	l l'			

Combinatoria 2 (Advanced) – Luca Macchiaroli

Stampato integrate dette tezioni	41
9) 1100 2024.6	
Coloro ogni rettie on prob p	
El 4 rette clorete 7 = np	
Overte sons le cree finite (el proj? 5 2	
Alloro IE [# eree gettive] = n p3	
Al selto telgo 1 rette Heree cettive	
Al selto telgo 1 rette Heree cettive Friene 15-[4 rette colorate restarti] ? Mp- 12/3	
We the course as ton i, i in I	
$h = \frac{3}{2}h^2\rho^2$ $p = \sqrt{\frac{2}{3}h}$	
Tacasens ema cosa un po' priu reffinato	
Vaglino conture max 1 # Qy.	
Ogni vertice è al più in 2 transpoli (dom oudro e figure)	
$\Rightarrow b \neq \Delta \in \# verbici \Rightarrow \leq \frac{h^2}{2}$	
Quinde faccio come prime, solvamente se non a conetto pa	
	7
Come prime, stiment gli elners quetals ter " come el pui non	1
othenieno	

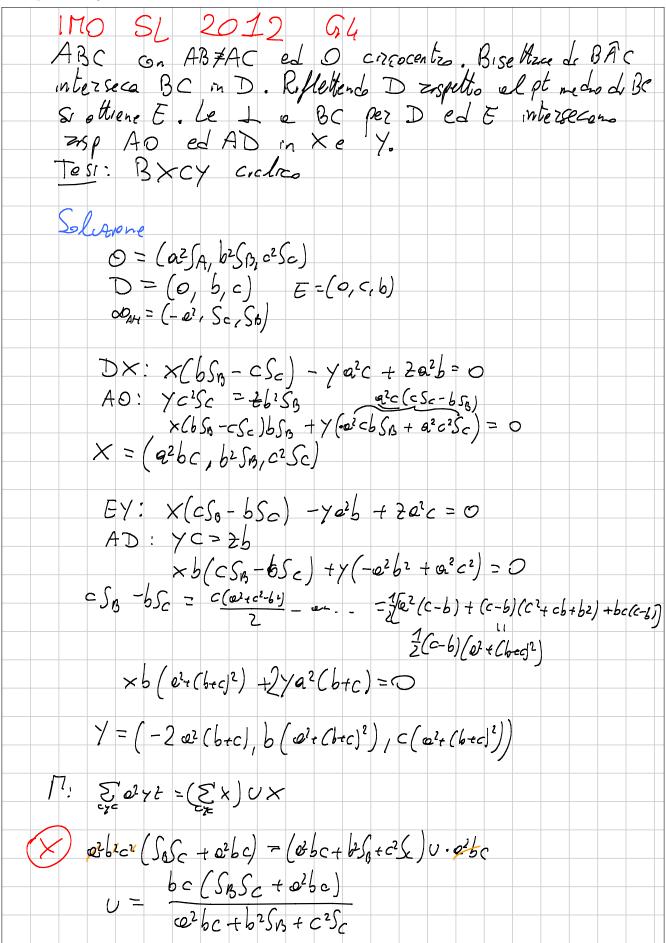

Combinatoria 2 (Advanced) – Luca Macchiaroli

42	Stage Senior 2018 – Livello Aavancea
102 2 2 2	
$np - \frac{n^2}{3}p^3 - \frac{n^2}{2}p^4$	$p = \frac{k}{Vh}$
$V_n\left(K - \frac{K^3}{3}\right) - \frac{K^4}{2}$	
K=1	
$\frac{2}{3}\sqrt{n} + \frac{1}{2}$	
	11/6
Allora justo de $\forall c \in \frac{2}{3}$ pez	n espessionte grande si he
$\frac{2}{3}\sqrt{n} - \frac{1}{2} \geqslant C\sqrt{n}$	
>D Ho le tes, If C = 3.	
C'e un metod Simile, ma pri quele si erriva alla stima c>0	Complicato, ettreverso il
gible Si 224Va alle Stima	Chrosp Pet in guelche

Combinatoria 2 (Advanced) – Luca Macchiaroli

Stampato integr	graie deile lezioni	43
G1	ADVANCED Lucallac	
Titolo nota		09/2018
· Parel	l O ar le	
7-2		
Xt	£7+2=0	
B170	0 2015, 2	
	Scaleno, I incentro e u cizeoscritta. AI Nov:	= {A DO
	nw={B,E's; CInw={C,F}. La parellele a BC	- / · / · / · /
	I interseca EF in K. Analogumente a definisco	ino
/	<i>[7]</i>	
Tes:	:: K, L, M allineati.	
Sol	luzione	
A7	I; yc=26 w: 5' a2yz=0	
\mathcal{D}	I; y c = 26 w: 5 a2y 7 = 0	
<i>E</i>	= (a (a a) - -2	
	$= (\alpha(a+c), -b^2, C(a+c))$ $= (\alpha(a+b), b(a+b), -c^2)$	
	- (a(a+6), b(a+6), -c-)	- 0
EF	=:-xbcq(()a) + yq(c(a+c)()a) + 2qb(e+b)()a)	= 0
Gi	FF: -xbc +yc(e+c) + 2b(e+b) = 0	
∞0	$D_{Bc} = (O(1, -1))$	
	T = (a, b, c)	
	∞_{sc} : $\times (b+c) - \gamma a - ta = 0$	
	$\mathcal{L} = (a(b-c), b^2, -c^2)$	
	$L = (a^2, -b^2, c(a-b))$	
	M= (-al, b(c-a), c2)	

Geometria 1 (Advanced) – Luca Macchiaroli



Geometria 1 (Advanced) – Luca Macchiaroli

Geometria 1 (Advanced) – Luca Macchiaroli

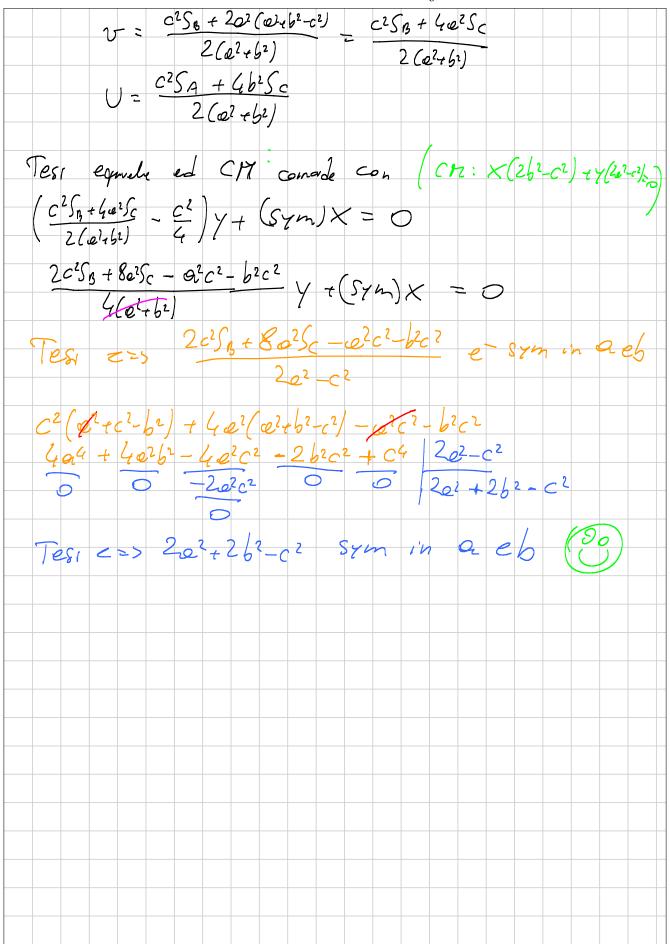
			Stage S	2010	- Livelio Au	- arrecea
IMO SL	2011 62					
A1, A2, A3,	Ay hon Concicl	lici. Oi	ed Zi	centro e	200000	2.
0{As}	Si 1 = 6					
<u>Tesi:</u>	CYC O.A 7. 2					
Soluzione	-2 - D . //	1				
Teologia	- z,2 = Powp. (A	;)				
1881 891	vivele a Significant Crc Pow,	1 = 0)			
	cyc low,	$\gamma_i(A_i)$				
P. fezimento	A2 A2 A3 A1	A, = c	A1 A2 = 6	A ₂ A ₃	= Q	
AL = (4,1	5,8) Ed 70		, , ,			
14:-2 or	$y \neq 0$ $\int_{3}^{3} x^{2}$	cyc - Salyt	+([] k) 2	وبرد =		
				8 2 2		
Yo 1974 (114	$) = - \left(\sum_{c \neq c} q^2 \beta \gamma \right).$	(E'a)2				
Parts (A	= = = = = = = = = = = = = = = = = = =	94/ V				
3	3) = 2 a2 1/4 8					
Tesi eq	uvele a - Er	4) ² + E	185.	1) =		
7	E' a?	4) 2 48 exc	5'a2/	8		-
0 0	Cyc 1		C	,	0	_ ~
Perpendico	slezi					
$\overline{\mathcal{Q}}_1^2(\times, \chi, \chi, 2)$	$\overrightarrow{v}_{2} = (\chi_{2}, \gamma_{1}, \xi_{2})$ $- \sum_{\alpha \neq 0} \alpha^{2} (\gamma_{1} \xi_{2} + \gamma_{2})$) 2,7	K1 = 0			
	= = a2 (Y, 22 +)	Y ₂ 2 1) = 0				
Dim! 177 =	X2 A + X, B + 3, C	-5				
			7 2 / 2	V 21		
	0 (x2+/2+2	2) 2 =70	y CYith	7281)		
055: Fun	tioner assumend.	5 T;	×0 50	le se	ho messo	il
centro	tioner essurend	2 cresc	ento	L ABC		

Geometria 1 (Advanced) – Luca Macchiaroli

Geometria 1 (Advanced) – Luca Macchiaroli

Geometria 1 (Advanced) – Luca Macchiaroli

L'asse radade c' $c(e-e)y + b(b-e)z = 0$ The public $a coso $	Stampato integrale aelle lezioni	49
A meno de scalore $\overrightarrow{AP} = (e(c-l)-b(b-l),b(b-l),-(c-l))$ $\overrightarrow{H1} = \overrightarrow{11} - \overrightarrow{H} = \overrightarrow{g} \cdot \overrightarrow{c} - (\overrightarrow{A} \cdot \overrightarrow{b} \cdot \overrightarrow{c}) = (-1,-\frac{1}{2},-\frac{1}{2}) \sim (2,1,1)$ Tes dunte: $a^2(b(b-l)-c(c-l))+b^2(-b(b-l)-c(c-l))+c^2(c(c-l)+b(b-l))=0$ $a^2(b(b-l)-c(c-l))+(c^2-b)(c(c-l)+b(b-l))=0$ $a^2(b+c-l)=(b+c)(c(c-l)+b(b-l))$ $a^2(b+c-l)=(b+c)(b+c^2-a^2)$ $a^2(b+c)=(b+c)(b+c^2-a^2)$ $a^2(b+c)=(b+c)(b+c^2-a^2)$ $a^2(b+c)=(b+c)(b+c^2-a^2)$ $a^2(b+c)=(b+c)(b+c^2-a^2)$ $a^2(b+c)=(b+c)(b+c^2-a^2)$ $a^2(b+c)=(b+c)(b+c)=(b+c)(b-c)$ $a^2(b+c)=(b+c)(b+c)=(a+b-c)(a+b-c)$ $a^2(b+c)=(a^2-b)=(b+c)(b+c)=(a+b-c)(a+c-b)$ $a^2(b+c)=(a^2-b)=(b+c)(a+b-c)(a+c-b)$ $a^2(b+c)=(a^2-b)=(b+c)(a+b-c)(a+c-b)$ $a^2(b+c)=(a^2-b)=(b+c)(a+b-c)(a+c-b)$ $a^2(b+c)=(a^2-b)=(b+c)(a+b-c)(a+c-b)$ $a^2(b+c)=(a^2-b)=(a+b-c)(a+b-c)(a+c-b)$ $a^2(b+c)=(a^2-b)=(a+b-c)(a+b-c)(a+c-b)$ $a^2(b+c)=(a^2-b)=(a+b-c)(a+b-c)(a+c-b)$ $a^2(b+c)=(a+b-c)(a+b-c)(a+c-b)$ $a^2(b+c)=(a+b-c)(a+b-c)(a+c-b)$ $a^2(b+c)=(a+b-c)(a+b-c)(a+c-b)$ $a^2(b+c)=(a+b-c)(a+b-c)(a+b-c)(a+c-b)$ $a^2(b+c)=(a+b-c)(a+b-c)(a+c-b)$ $a^2(b+c)=(a+b-c)(a+b-c)(a+c-b)$ $a^2(b+c)=(a+b-c)(a+b-c)(a+c-b)$ $a^2(b+c)=(a+b-c)(a+c-b)$ $a^2(b+c)=(a+b-c)$	l'esse radale e' C(E-l/y + 6(6-l/2 = 0	
A meno de scalare $\overrightarrow{AP} = (e(c-l)-b(b-l),b(b-l),-(c-l))$ $\overrightarrow{H1} = \overrightarrow{11} - \overrightarrow{H} = \overrightarrow{g} \cdot \overrightarrow{c} - (\overrightarrow{A} \cdot \overrightarrow{b} \cdot \overrightarrow{c}) = (-1, -\frac{1}{2}, -\frac{1}{2}) \sim (2, 1, 1)$ Tes dunta: $a^2(b(b-l)-c(c-l))+b^2(-b(b-l)-c(c-l))+c^2(c(c-l+b(b-e))=0$ $e^2(b(b-l)-c(c-l))+(c^2-b)(c(c-l)+b(b-l))=0$ $e^2(b+c-l)=(b+c)(c(c-l)+b(b-l))$ $e^2(b+c-l)=(b+c)(c(c-l)+b(b-l))$ $e^2(b+c)(b+c^2-a^2)$ Oza Sappiemo $e^2(b+c)(c(c-l)+b(b-l))$ $e^2(b+c)(b+c^2-a^2)$	Due punti e caso DA	
A meno de scalare $\overrightarrow{AP} = (e(c-l)-b(b-l),b(b-l),-(c-l))$ $\overrightarrow{H1} = \overrightarrow{11} - \overrightarrow{H} = \overrightarrow{g} \cdot \overrightarrow{c} - (\overrightarrow{A} \cdot \overrightarrow{b} \cdot \overrightarrow{c}) = (-1, -\frac{1}{2}, -\frac{1}{2}) \sim (2, 1, 1)$ Tes dunta: $a^2(b(b-l)-c(c-l))+b^2(-b(b-l)-c(c-l))+c^2(c(c-l+b(b-e))=0$ $e^2(b(b-l)-c(c-l))+(c^2-b)(c(c-l)+b(b-l))=0$ $e^2(b+c-l)=(b+c)(c(c-l)+b(b-l))$ $e^2(b+c-l)=(b+c)(c(c-l)+b(b-l))$ $e^2(b+c)(b+c^2-a^2)$ Oza Sappiemo $e^2(b+c)(c(c-l)+b(b-l))$ $e^2(b+c)(b+c^2-a^2)$	(Z) OPC = P(O, b(b-l), -c(C-l)	
$\begin{aligned} & \overrightarrow{H11} = \overrightarrow{11} - \overrightarrow{H} = \overrightarrow{0} + \overrightarrow{c} - (\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{c}) = (-1, -\frac{1}{2}, -\frac{1}{2}) \sim (2, 1, 1) \\ & \overrightarrow{Tess} \ dunto : \\ & \cancel{a^2} \left(b(b-l) - c(c-l) \right) + b^2 \left(-b(b-l) - c(c-l) \right) + c^2 \left(c(c-l) + b(b-e) \right) \stackrel{?}{=} 0 \\ & \cancel{a^2} \left(b + c - l \right) \stackrel{?}{=} \left(b + c \right) \left(c(c-l) + b(b-l) \right) \stackrel{?}{=} 0 \\ & \cancel{a^2} \left(b + c - l \right) \stackrel{?}{=} \left(b + c \right) \left(c(c-l) + b(b-l) \right) \\ & l \stackrel{?}{=} \left(b + c \right) \left(b^2 + c^2 - a^2 \right) \\ & l \stackrel{?}{=} \left(b + c \right) \left(b^2 + c^2 - a^2 \right) \\ & c c c + b c c c c c c c c c c c c c c c$		
$\begin{aligned} & \overrightarrow{H11} = \overrightarrow{11} - \overrightarrow{H} = \overrightarrow{0} + \overrightarrow{c} - (\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{c}) = (-1, -\frac{1}{2}, -\frac{1}{2}) \sim (2, 1, 1) \\ & \overrightarrow{Tess} \ dunto : \\ & \cancel{a^2} \left(b(b-l) - c(c-l) \right) + b^2 \left(-b(b-l) - c(c-l) \right) + c^2 \left(c(c-l) + b(b-e) \right) \stackrel{?}{=} 0 \\ & \cancel{a^2} \left(b + c - l \right) \stackrel{?}{=} \left(b + c \right) \left(c(c-l) + b(b-l) \right) \stackrel{?}{=} 0 \\ & \cancel{a^2} \left(b + c - l \right) \stackrel{?}{=} \left(b + c \right) \left(c(c-l) + b(b-l) \right) \\ & l \stackrel{?}{=} \left(b + c \right) \left(b^2 + c^2 - a^2 \right) \\ & l \stackrel{?}{=} \left(b + c \right) \left(b^2 + c^2 - a^2 \right) \\ & c c c + b c c c c c c c c c c c c c c c$	A mero L scalore AP = (E(c-l)-b(b-l)-b(b-l)-c(-1)	
Tesi dunte: \[\alpha^2 \left(\beta(b-l) - c(c-l) \right) + \beta^2 \left(-b(b-l) - c(c-l) \right) + \cdot^2 \left(c(c-l) + b(b-l) \right) \\ \alpha^2 \left(\beta(b-l) - c(c-l) \right) + \left(c^2 b^2 \right) \left(c(c-l) + b(b-l) \right) \\ \alpha^2 \left(\beta + c - l \right) \\ \frac{1}{2} \left(\beta + c \right) \left(\cdot c(c-l) + b(b-l) \right) \\ \alpha^2 \left(\beta + c \right) \left(\beta + c \right) \left(\cdot c(c-l) + b(b-l) \right) \\ \alpha^2 \left(\beta + c \right) \left(\beta + c \right) \left(\beta + b - c \right) \\ \alpha^2 \left(\beta + c \right) \left(\beta + c \right) \right) \\ \alpha^2 \left(\beta + c \right) \left(\beta + c \right) \right) \\ \alpha^2 \left(\beta + c \right) \left(\beta + c \right) \right) \\ \alpha^2 \left(\beta + c \right) \left(\beta + c \right) \right) \\ \alpha^2 \left(\beta + c \right) \left(\beta + c \right) \right) \\ \alpha^2 \left(\beta + c \right) \left(\beta + c \right) \left(\beta + c \right) \right) \\ \alpha^2 \left(\beta + c \right) \left(\beta + c \right) \right) \\ \alpha^2 \left(\beta + c \right) \left(\beta + c \right) \right) \\ \alpha^2 \left(\beta + c \right) \left(\beta + c \right) \right) \\ \alpha^2 \left(\beta + c \right) \right) \\ \alpha^2 \left(\beta + c \right) \left		
Tesi dunte: \[\alpha^2 \left(\beta(b-l) - c(c-l) \right) + \beta^2 \left(-b(b-l) - c(c-l) \right) + \cdot^2 \left(c(c-l) + b(b-l) \right) \\ \alpha^2 \left(\beta(b-l) - c(c-l) \right) + \left(c^2 b^2 \right) \left(c(c-l) + b(b-l) \right) \\ \alpha^2 \left(\beta + c - l \right) \\ \frac{1}{2} \left(\beta + c \right) \left(\cdot c(c-l) + b(b-l) \right) \\ \alpha^2 \left(\beta + c \right) \left(\beta + c \right) \left(\cdot c(c-l) + b(b-l) \right) \\ \alpha^2 \left(\beta + c \right) \left(\beta + c \right) \left(\beta + b - c \right) \\ \alpha^2 \left(\beta + c \right) \left(\beta + c \right) \right) \\ \alpha^2 \left(\beta + c \right) \left(\beta + c \right) \right) \\ \alpha^2 \left(\beta + c \right) \left(\beta + c \right) \right) \\ \alpha^2 \left(\beta + c \right) \left(\beta + c \right) \right) \\ \alpha^2 \left(\beta + c \right) \left(\beta + c \right) \right) \\ \alpha^2 \left(\beta + c \right) \left(\beta + c \right) \left(\beta + c \right) \right) \\ \alpha^2 \left(\beta + c \right) \left(\beta + c \right) \right) \\ \alpha^2 \left(\beta + c \right) \left(\beta + c \right) \right) \\ \alpha^2 \left(\beta + c \right) \left(\beta + c \right) \right) \\ \alpha^2 \left(\beta + c \right) \right) \\ \alpha^2 \left(\beta + c \right) \left	$H\Pi = \Pi - H = \frac{1}{2} - (A + B + c) = (-1, -\frac{1}{2}, -\frac{1}{2}) \sim (2, 1)$	
$ \begin{array}{l} a^{2}(b(b-l)-c(c-e))+b^{2}(-b(b-l)-c(c-e))+c^{2}(c(c-e)+b(b-e))=0 \\ e^{2}(b(b-l)-c(c-e))+(c^{2}-b^{2})(c(c-e)+b(b-e))=0 \\ a^{2}(b+c-e)=\frac{1}{2}(b+c)(c(c-e)+b(b-e))=\frac{1}{2}0 \\ e^{2}(b+c-e)=\frac{1}{2}(b+c)(b^{2}+c^{2}-e^{2}) \\ e^{2}(b+c)=\frac{1}{2}(b+c)=\frac{1}{2}(e+b+c)=0 \\ -\frac{1}{2}(b+c)^{2}-a^{2} \end{array} $ $ \begin{array}{l} constant & c$	Tec du la	
$e^{2}(b(b-l)-c(c-l))+(c^{2}b^{2})(c(c-l)+b(b-l))\stackrel{?}{=}0$ $e^{2}(b+c-l)\stackrel{?}{=}(b+c)(c(c-l)+b(b-l))$ $e^{2}(b+c-l)\stackrel{?}{=}(b+c)(c(c-l)+b(b-l))$ $e^{2}(b+c)(b^{2}c^{2}-a^{2})$ $e^{2}(b+c)(b^{2}c^{2}-a^{2})$ $e^{2}(b+c)(b^{2}c^{2}-a^{2})$ $e^{2}(b+c)\stackrel{?}{=}(b+c)(b^{2}-a^{2})$ $e^{2}(b+c)(b^{2}-a^{2})$ $e^{2}(b+c)(b^{2}-b^{2})=\frac{1}{2}(b+c)(b^{2}-b^{2}-b^{2})$ $e^{2}(b+c)(a^{2}-(b-c)^{2})=\frac{1}{2}(b+c)(a+b-c)(a+c-b)$ $e^{2}(b+c)(a^{2}-b^{2})=\frac{1}{2}(b+c)(a+b-c)(a+c-b)$ $e^{2}(b+c)(a+b-c)(a+c-b)$ $e^{2}(b+c)(a+c-b)$ $e^{2}(b+c)(a+b-c)(a+c-b)$ $e^{2}(b+c)(a+b-c)(a+c-b)$ $e^{2}(b+c)(a+b-c)(a+c-b)$ $e^{2}(b+c)(a+b-c)(a+c-b)$ $e^{2}(b+c)(a+b-c)(a+c-b)$ $e^{2}(b+c)(a+b-c)(a+c-b)$ $e^{2}(b+c)(a+b-c)(a+c-b)$ $e^{2}(b+c)(a+c-b)(a+c-b)$ $e^{2}(b+c)(a+c-b)(a+c-b)$ $e^{2}(b+c)(a+c-b)(a+c-b)$ $e^{2}(b+c)(a+c-b)(a+c-b)$ $e^$	92 (b(b-e)-c(c-e))+b2(-b(b-e)-c(c-e))+c2(c(c-e)+b(b-e))=	0
$Q^{2}(b+c-l) \stackrel{?}{=} (b+c)(c(c-l)+b(b-l))$ $l \stackrel{?}{=} (b+c)(b^{2}+c^{2}-a^{2})$ $Oza Seppiemo $		
$ \begin{array}{l} \mathcal{L} \stackrel{!}{=} \frac{(b+c)(b^2+c^2-a^2)}{(b+c)^2} \\ \text{Oza Sappiano} & \mathcal{E} S_A S_B = \frac{1}{4} \frac{(a+b+c)}{(a+b-c)} \\ S_A = \frac{b^2+c^2-a^2}{2} \\ \text{CSc} + b S_B = \frac{1}{2} \left[\frac{a^2}{(b+c)} + bc(b+c) - \frac{(b+c)(b^2-bc+c^2)}{2} \right] \\ = \frac{1}{2} \frac{(b+c)(a^2-(b-c)^2)}{(a^2-(b-c)^2)} = \frac{1}{2} \frac{(b+c)(a+b-c)(a+c-b)}{(a+b-c)(a+c-b)} \\ \text{e oza a omo!} \\ \text{POLI e POLAZI} \\ \text{Gone Si fanno? Solo Mienenbo?} \\ \text{X}^2 L > X_0 \\ \text{X}'_1 - X_0 \\ \text{X}'_2 - X_0 + X_0 \end{array} $ La polaze $d_i(x_i, \beta_i, x_i)$ Zisp o $\mathcal{E}_i^{e_i} y_i^2 = 0$		
Oza Seppiemo $\sum_{c,c} S_A S_B = \frac{1}{4} (e+b+c) T (e+b-c)$ $S_A = \frac{b^2+c^2+a^2}{2}$ $CS_C + bS_B = \frac{1}{2} \left[\frac{a^2(b+c) + bc(b+c) - (b+c)(b^2-bc+c^2)}{2} \right] = \frac{1}{2} (b+c) (a^2 - (b-c)^2) = \frac{1}{2} (b+c) (a+b-c)(a+c-b)$ $e = \sum_{c} a^2 o wio!$ $POLI = POLAZI$ $Cone = Si $	a(b+c-l) = (b+c)(c(c-l)+b(b-l))	
Oza Seppiemo $\sum_{c,r} S_A S_B = \frac{1}{4} (e+b+c) T (e+b-c)$ $S_A = \frac{b^2+c^2+a^2}{2}$ $CS_C + bS_B = \frac{1}{2} \left[\frac{a^2(b+c) + bc(b+c) - (b+c)(b^2-bc+c^2)}{2} \right] = \frac{1}{2} (b+c) (a^2 - (b-c)^2) = \frac{1}{2} (b+c) (a+b-c)(a+c-b)$ $e = \sum_{c} a^2 \circ w_i \circ i$ $POLI = POLAZI$ $Come & fanno? Solo Mienenbo?$ $X^2 L D X X_0$ $XYL Y X_0 + Y X_0$ 2 $Le poleze d, (x, x, y) Zop o \sum_{c} e^{iy} t = 0$	$\int_{-\infty}^{\infty} \frac{(b+c)(b^2+c^2-\omega^2)}{(b+c)(b^2+c^2-\omega^2)}$	
Oza Seppiemo $\sum_{c,c} S_A S_B = \frac{1}{4} (e+b+c) T (e+b-c)$ $S_A = \frac{b^2+c^2+a^2}{2}$ $CS_C + bS_B = \frac{1}{2} \left[\frac{a^2(b+c) + bc(b+c) - (b+c)(b^2-bc+c^2)}{2} \right] = \frac{1}{2} (b+c) (a^2 - (b-c)^2) = \frac{1}{2} (b+c) (a+b-c)(a+c-b)$ $e = \sum_{c} a^2 o wio!$ $POLI = POLAZI$ $Cone = Si $	(b+c)2-02	
$SA = \frac{b^{4}cc^{2}cd}{2}$ $CSC + bSB = \frac{1}{2} \left[\frac{a^{2}(b+c) + bc(b+c) - (b+c)(b^{2} - bc + c^{2})}{2 - bc + c^{2}} \right] = \frac{1}{2} (b+c) \left(\frac{a^{2}}{a^{2}} - (b-c)^{2} \right) = \frac{1}{2} (b+c) \left(\frac{a+b-c}{a^{2}} - bc + c^{2} \right) = \frac{1}{2} (b+c) \left(\frac{a+b-c}{a^{2}} - \frac{bc}{a^{2}} - \frac{bc}{a^{2}} \right) = \frac{1}{2} (b+c) \left(\frac{a+b-c}{a^{2}} - \frac{bc}{a^{2}} - \frac{bc}{a^{2}} \right) = \frac{1}{2} (b+c) \left(\frac{a+b-c}{a^{2}} - \frac{bc}{a^{2}} -$		
$SA = \frac{b^{4}cc^{2}cd}{2}$ $CSC + bSB = \frac{1}{2} \left[\frac{a^{2}(b+c) + bc(b+c) - (b+c)(b^{2} - bc + c^{2})}{2 - bc + c^{2}} \right] = \frac{1}{2} (b+c) \left(\frac{a^{2}}{a^{2}} - (b-c)^{2} \right) = \frac{1}{2} (b+c) \left(\frac{a+b-c}{a^{2}} - bc + c^{2} \right) = \frac{1}{2} (b+c) \left(\frac{a+b-c}{a^{2}} - \frac{bc}{a^{2}} - \frac{bc}{a^{2}} \right) = \frac{1}{2} (b+c) \left(\frac{a+b-c}{a^{2}} - \frac{bc}{a^{2}} - \frac{bc}{a^{2}} \right) = \frac{1}{2} (b+c) \left(\frac{a+b-c}{a^{2}} - \frac{bc}{a^{2}} -$	Ca Septieno CASB - [(a+b-c)	
$CSC + bSB = \frac{1}{2} \left[\frac{a^2(b+c) + bc(b+c) - (b+c)(b^2 - bc+c^2)}{2 - bc+c^2} \right] = \frac{1}{2} \left(\frac{b+c}{c} \right) \left(\frac{a^2 - (b-c)^2}{2} \right) = \frac{1}{2} \left(\frac{b+c}{c} \right) \left(\frac{a+b-c}{a+b-c} \right) \left(\frac{a+c-b}{a+c-b} \right) = \frac{1}{2} \left(\frac{b+c}{a+b-c} \right) \left(\frac{a+b-c}{a+c-b} \right) = \frac{1}{2} \left(\frac{b+c}{a+b-c} \right) \left(\frac{a+b-c}{a+b-c} \right) = \frac{1}{2} \left(\frac{b+c}{a+b-c} \right) \left(\frac{a+b-c}{a+c-b} \right) = \frac{1}{2} \left(\frac{b+c}{a+b-c} \right) \left(\frac{a+b-c}{a+b-c} \right) = \frac{1}{2} \left(\frac{b+c}{a+b-c} \right) = \frac{1}{2} \left(\frac{a+b-c}{a+b-c} \right) \left(\frac{a+b-c}{a+b-c} \right) = \frac{1}{2} \left(\frac{a+b-c}{a+b-c} \right) \left(\frac{a+b-c}{a+b-c} \right) = \frac{1}{2} \left(\frac{a+b-c}{a+b-c} \right) \left(\frac{a+b-c}{a+b-c} \right) = \frac{1}{2} \left(\frac{a+b-c}{a+b-c} \right) = \frac{1}{2} \left(\frac{a+b-c}{a+b-c} \right) \left(\frac{a+b-c}{a+b-c} \right) = \frac{1}{2} \left(\frac{a+b-c}{a+b-c} \right) = \frac{1}{2} \left(\frac{a+b-c}{$	$S_A = \frac{b^2 + c^2 \cdot \omega^2}{2}$	
$= \frac{1}{2} \left(b + c \right) \left(a^2 - \left(b - c \right)^2 \right) = \frac{1}{2} \left(b + c \right) \left(a + b - c \right) \left(a + c - b \right)$ $= \frac{1}{2} \left(b + c \right) \left(a^2 - \left(b - c \right)^2 \right) = \frac{1}{2} \left(b + c \right) \left(a + b - c \right) \left(a + c - b \right)$ $= \frac{1}{2} \left(b + c \right) \left(a^2 - \left(b - c \right)^2 \right) = \frac{1}{2} \left(b + c \right) \left(a + b - c \right) \left(a + c - b \right)$ $= \frac{1}{2} \left(b + c \right) \left(a^2 - \left(b - c \right)^2 \right) = \frac{1}{2} \left(b + c \right) \left(a + b - c \right) \left(a + c - b \right)$ $= \frac{1}{2} \left(b + c \right) \left(a^2 - \left(b - c \right)^2 \right) = \frac{1}{2} \left(b + c \right) \left(a + b - c \right) \left(a + c - b \right)$ $= \frac{1}{2} \left(b + c \right) \left(a^2 - \left(b - c \right)^2 \right) = \frac{1}{2} \left(b + c \right) \left(a + b - c \right) \left(a + c - b \right)$ $= \frac{1}{2} \left(b + c \right) \left(a^2 - \left(b - c \right)^2 \right) = \frac{1}{2} \left(b + c \right) \left(a + b - c \right) \left(a + c - b \right)$ $= \frac{1}{2} \left(b + c \right) \left(a^2 - b - c \right) \left(a + b - c \right) \left(a + c - b \right)$ $= \frac{1}{2} \left(b + c \right) \left(a + b - c \right) \left(a + b - c \right) \left(a + c - b \right)$ $= \frac{1}{2} \left(b + c \right) \left(a + b - c \right) \left(a + b - c \right) \left(a + c - b \right)$ $= \frac{1}{2} \left(b + c \right) \left(a + b - c \right) \left(a + b - c \right) \left(a + c - b \right)$ $= \frac{1}{2} \left(b + c \right) \left(a + b - c \right) \left(a + b - c \right) \left(a + c - b \right)$ $= \frac{1}{2} \left(b + c \right) \left(a + b - c \right) \left(a + b - c \right) \left(a + c - b \right)$ $= \frac{1}{2} \left(b + c \right) \left(a + b - c \right) \left(a + b - c \right) \left(a + c - b \right)$ $= \frac{1}{2} \left(b + c \right) \left(a + b - c \right) \left(a + b - c \right) \left(a + c - b \right)$ $= \frac{1}{2} \left(b + c \right) \left(a + b - c \right) \left(a + b - c \right) \left(a + c - b \right)$ $= \frac{1}{2} \left(b + c \right) \left(a + b - c \right) \left(a + b - c \right) \left(a + c - b \right)$ $= \frac{1}{2} \left(b + c \right) \left(a + c - c \right) \left(a + c - c \right)$ $= \frac{1}{2} \left(b + c \right) \left(a + c - c \right) \left(a + c - c \right)$ $= \frac{1}{2} \left(a + c - c \right) \left(a + c - c \right)$ $= \frac{1}{2} \left(a + c - c \right) \left(a + c - c \right)$ $= \frac{1}{2} \left(a + c - c \right) \left(a + c - c \right)$ $= \frac{1}{2} \left(a + c - c \right) \left(a + c - c \right)$ $= \frac{1}{2} \left(a + c - c \right)$ $= \frac{1}{2} \left(a + c - c \right)$ $= \frac{1}{2} \left(a + c - c \right)$ $= \frac{1}{2} \left(a + c - c \right)$ $= \frac{1}{2} \left(a + c - c \right)$ $= \frac{1}{2} \left(a + c - c \right)$ $= \frac{1}{2} \left(a + c - c \right)$ $= \frac{1}{2} \left(a + c - c \right)$ $= \frac{1}{2} \left(a + c - c \right)$ $= \frac{1}{2} \left(a + c - c \right)$ $= \frac{1}{2} \left(a + c - c \right)$		
$= \frac{1}{2} \left(b + c \right) \left(a^2 - \left(b - c \right)^2 \right) = \frac{1}{2} \left(b + c \right) \left(a + b - c \right) \left(a + c - b \right)$ $= \frac{1}{2} \left(b + c \right) \left(a^2 - \left(b - c \right)^2 \right) = \frac{1}{2} \left(b + c \right) \left(a + b - c \right) \left(a + c - b \right)$ $= \frac{1}{2} \left(b + c \right) \left(a^2 - \left(b - c \right)^2 \right) = \frac{1}{2} \left(b + c \right) \left(a + b - c \right) \left(a + c - b \right)$ $= \frac{1}{2} \left(b + c \right) \left(a^2 - \left(b - c \right)^2 \right) = \frac{1}{2} \left(b + c \right) \left(a + b - c \right) \left(a + c - b \right)$ $= \frac{1}{2} \left(b + c \right) \left(a^2 - \left(b - c \right)^2 \right) = \frac{1}{2} \left(b + c \right) \left(a + b - c \right) \left(a + c - b \right)$ $= \frac{1}{2} \left(b + c \right) \left(a^2 - \left(b - c \right)^2 \right) = \frac{1}{2} \left(b + c \right) \left(a + b - c \right) \left(a + c - b \right)$ $= \frac{1}{2} \left(b + c \right) \left(a^2 - \left(b - c \right)^2 \right) = \frac{1}{2} \left(b + c \right) \left(a + b - c \right) \left(a + c - b \right)$ $= \frac{1}{2} \left(b + c \right) \left(a^2 - b - c \right) \left(a + b - c \right) \left(a + c - b \right)$ $= \frac{1}{2} \left(b + c \right) \left(a + b - c \right) \left(a + b - c \right) \left(a + c - b \right)$ $= \frac{1}{2} \left(b + c \right) \left(a + b - c \right) \left(a + b - c \right) \left(a + c - b \right)$ $= \frac{1}{2} \left(b + c \right) \left(a + b - c \right) \left(a + b - c \right) \left(a + c - b \right)$ $= \frac{1}{2} \left(b + c \right) \left(a + b - c \right) \left(a + b - c \right) \left(a + c - b \right)$ $= \frac{1}{2} \left(b + c \right) \left(a + b - c \right) \left(a + b - c \right) \left(a + c - b \right)$ $= \frac{1}{2} \left(b + c \right) \left(a + b - c \right) \left(a + b - c \right) \left(a + c - b \right)$ $= \frac{1}{2} \left(b + c \right) \left(a + b - c \right) \left(a + b - c \right) \left(a + c - b \right)$ $= \frac{1}{2} \left(b + c \right) \left(a + b - c \right) \left(a + b - c \right) \left(a + c - b \right)$ $= \frac{1}{2} \left(b + c \right) \left(a + b - c \right) \left(a + b - c \right) \left(a + c - b \right)$ $= \frac{1}{2} \left(b + c \right) \left(a + c - c \right) \left(a + c - c \right)$ $= \frac{1}{2} \left(b + c \right) \left(a + c - c \right) \left(a + c - c \right)$ $= \frac{1}{2} \left(a + c - c \right) \left(a + c - c \right)$ $= \frac{1}{2} \left(a + c - c \right) \left(a + c - c \right)$ $= \frac{1}{2} \left(a + c - c \right) \left(a + c - c \right)$ $= \frac{1}{2} \left(a + c - c \right) \left(a + c - c \right)$ $= \frac{1}{2} \left(a + c - c \right)$ $= \frac{1}{2} \left(a + c - c \right)$ $= \frac{1}{2} \left(a + c - c \right)$ $= \frac{1}{2} \left(a + c - c \right)$ $= \frac{1}{2} \left(a + c - c \right)$ $= \frac{1}{2} \left(a + c - c \right)$ $= \frac{1}{2} \left(a + c - c \right)$ $= \frac{1}{2} \left(a + c - c \right)$ $= \frac{1}{2} \left(a + c - c \right)$ $= \frac{1}{2} \left(a + c - c \right)$ $= \frac{1}{2} \left(a + c - c \right)$	CSC+65B= 2 (6+c)+6c(b+c) - (b+c)(b2-6c+c2) =	
POLI e POLAZI Come si famo? Soppiemento? XI LD XX. 2 La polaze di (x, b, x) Zisp a Elyt=0		
POLI e POLARI Come si fanno? Soloppiemento? XI LDXX. XYLX YOTYX. 2 Le polare d. (x, B, X) Top a Elelyt=0		
Come si feanno? Solo Mienento? X'LDXX. XYLX XY. Z Le polere d, (x, B, X) Tisp a Eely 2 = 0		
Come si feanno? Solo Mienento? X'LDXX. XYLX XY. Z Le polere d, (x, B, X) Tisp a Eely 2 = 0	POLL & 20/A21	- o
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Come & Praymo? Solo Mio ne a to?	
Le polere d, (α, β, δ) Top o $\sum_{i=1}^{n} 2^{i} + i = 0$	$X^{1} \mapsto XX$	
Le polere d, (x, B, x) resp e Eely 2 = 0		
	La polazo de (or. B. X) Zesp a Elyz=0	
$\sum_{C \neq C} G_{C}(\gamma) \circ f t \gamma \rangle = 0$		
	2 95 (7 0 + t/1) - U	

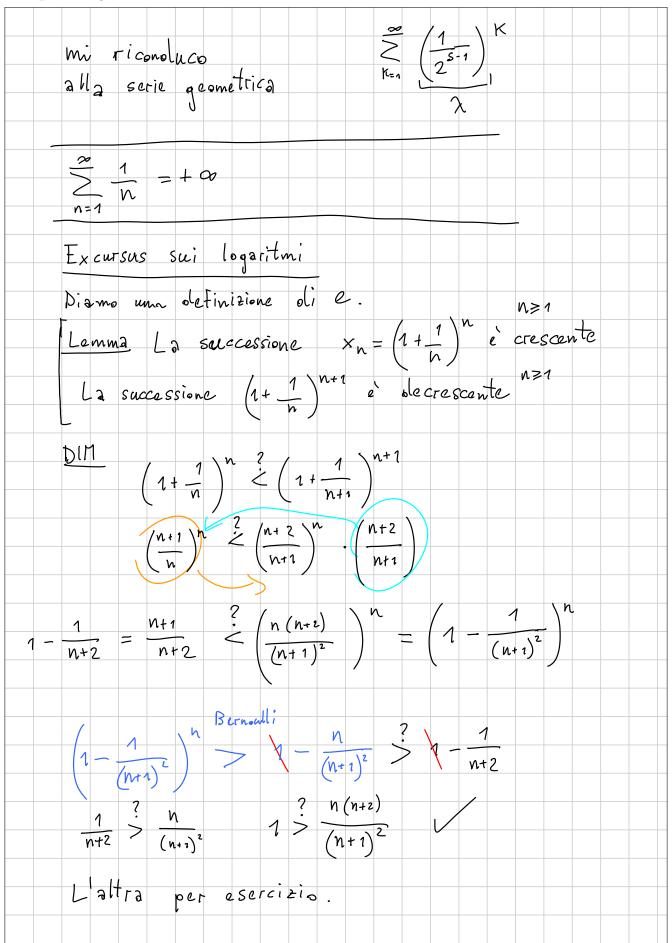

Geometria 1 (Advanced) – Luca Macchiaroli

Lo pelere d
$$(1,0,0)$$
 ≈ 50 o \mathbb{E} $e^{i}\gamma t = (\mathbb{E} \times)(\mathbb{E} \cup x)$
 $b^{2}z + c^{2}\gamma = 20x + v\gamma + vz$
 $+vy + vz$
 $+st^{2}y = 20x + v\gamma + vz$
 $+st^{2}y = 20t^{2}y = 20t^$

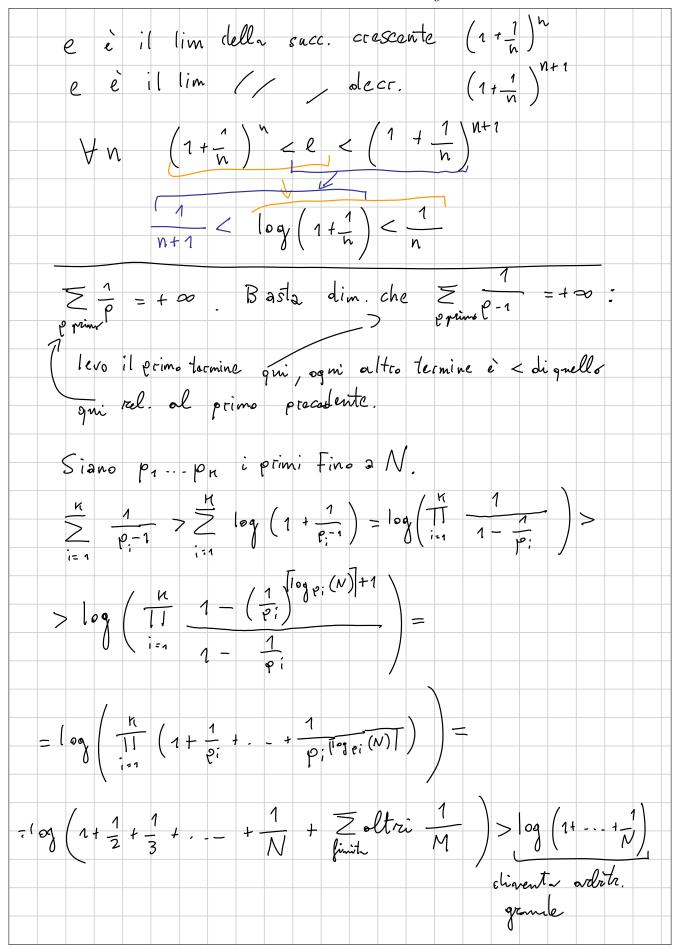
Geometria 1 (Advanced) – Luca Macchiaroli

CD; x=y	
H'I': del(
H'I': × 21 (462-02) +4 21 (4e2-02) -202-01 =0	
$(46^{2}+4e^{2}-2c^{2}) \times = 2c^{2}$	
$Q = (c^2, c^2, 2(2e^2 + 2b^2 - c^2))$	
FG: 2=×+4	
$A7: \times (2b^2-c^2) + \gamma(2ce^2-c^2) = 0$	
$\mathcal{O}_{A} = \left(-\frac{e^{2}}{e^{2}}, S_{c}, S_{b}\right)$	
$Q \infty_A : \times (c^2 S_B - 2 S_C (2e^2 + 2b^2 - c^2)) +$	
$+y(-2e^{2}(2e^{2}+2b^{2}-c^{2})-c^{2}S_{B})+2c^{2}(ce^{2}+S_{C})=0$	
QOANIX=04 ND QA = (0, c2(e2+Sc), c2SB+2e2(2e2+262-c2))	
	1
w de centro Q che pesse per C (=D per 2Q4-C)	+
$\Sigma Q_A = 2a^2(a^2+b^2) \sim C = (0, 0, (a^2(a^2+b^2))$	
$20(-10)^{2}(12)(12)(12)(12)(12)(12)(12)(12)(12)(12)$	
$2Q_A - C = (0, c^2(a^2+S_c), c^2S_B + 2a^2(2a^2+b^2-c^2) - 2a^2(a^2+b^2))$	
2QA-C=(0, c2(e2+Sc), c2SB+2e2(e2+52-c2))	
$\omega: \sum_{c \neq c} e^2 \gamma^2 = (\sum_{c \neq c} \chi) (U \chi + V \gamma)$	
(20A-C) et c2(e2+5c)(c25,+202(a2+62-c2)) = 202(02+62)vc2(025c	<u>:</u>)

Geometria 1 (Advanced) – Luca Macchiaroli

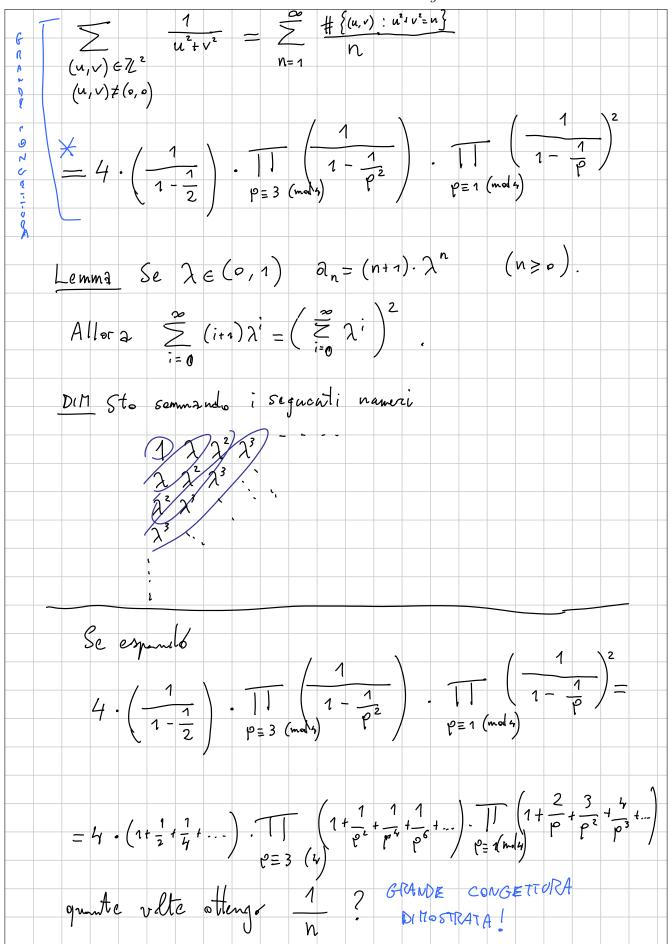

Geometria 1 (Advanced) – Luca Macchiaroli

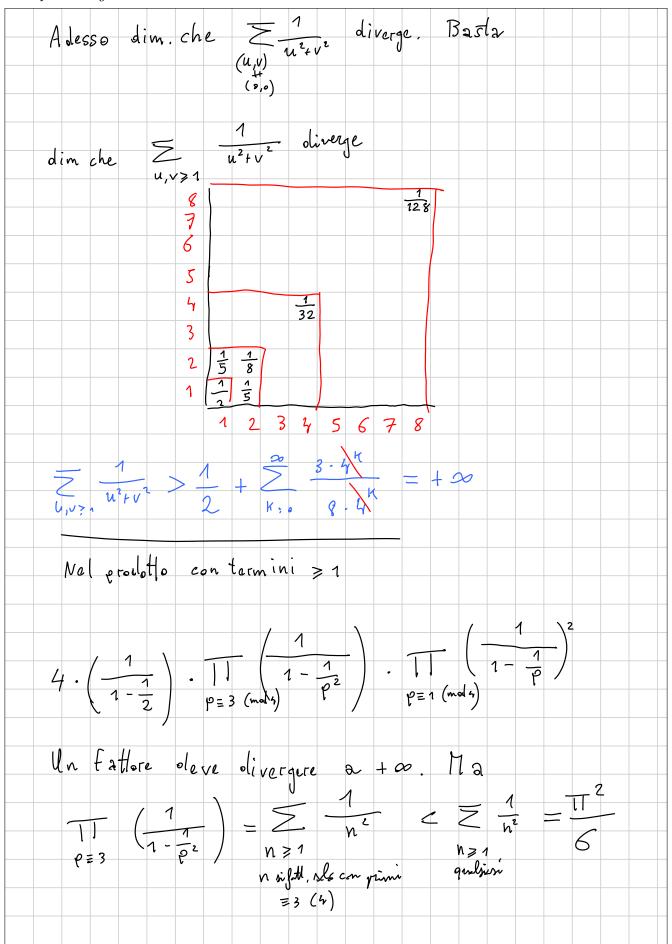
Stampato integrate actic textoni
Senior 2018 - N1 Advanced - Anér
$\sum_{p \text{ prime}} \frac{1}{p} = +\infty$
\rightarrow $+$ $=$ $+$ ∞
p primó
P T white
Def Sia a, a, una successione di reali >0.
n n
Allora la successione Sn = Zan è debodmente
/Illora 17 successione on - Ean e acogmente
1=1
crescente. Se l'=lim S. <+2 allera diciona che
Crescente. Se l=lim Sn <+00, allora diciamo che "La serie connerge à l" n-200 "La serie diverge a +00" \[\begin{align*} \beq
+ as converge à l'active d'verge à 100
Dan = Altimenti Zan = +20
n=1 n=1
Par 1 primi P 2, P 2, P 3
2 3 5 <i>f</i> · ~
$4\overline{p}$ \overline{p} \overline{p} \overline{p} \overline{p}
$\frac{1}{2} \frac{1}{p_i} = \frac{1}{p_i}$
S è un insieme, $a:S \rightarrow [o,\infty)$ $a(s)=a_s$ $s \in S$
Si un insieme, $a:S \rightarrow [o,\infty)$ $a(s)=a_s$ $s \in S$
$\geq a_s - sup \left(\geq a_s \right)$
ses Te's se'
T finito
Esempio an = λ (partendo da a = 1) λ≥0
es ; + 20 se $\lambda \geqslant 1$: ogni volta agojing $\lambda^{n} \geqslant 1$
$\frac{1}{1-x^{n+1}} = \frac{1}{1-x^{n+1}} = \frac{1}{1-x^{$
$\frac{1}{1-\lambda}: i_0Fatt; \qquad \frac{1}{1-\lambda} = \frac{1-\lambda^{n+1}}{1-\lambda} = \frac{1}{1-\lambda}$


Teoria dei Numeri 1 (Advanced) – Andrea Bianchi

01	Stage School Solo Hocean Havan
Esempio	$a_n = \frac{1}{n(n+1)}$ (partendo da a_1).
20 1 1 (i)	
Jafatti	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Variante	$i_{i=1}$ 1 1 1 2 1 2 1 2 3 1 2 3 1 3 3 1 3 3 4 3 4 3 4 4 5 4 5 4 5 6 7 6 7 6 7 6 7 1 1 1 1 1 1 1 2 3 4 4 5 1 1 1 2 3 4 5 1 1 2 3 4 5 1 1 2 3 4 5 1 1 3 4 5 1 1 4 5 1 1 4 5 1 1 1 2 3 4 5 1 1 3 4 5 4 5 1 1 4 5 6 7 1 1 1 1 1 1 1 1 1 1
Si, a pa	arte il primo termine 1, ogni altro
1	< 1 e la serie di questi ultimi converge.
Escmpio	$5>0 \qquad 2n=\frac{1}{n^5} con n \ge 1$
2 1 2 - 3	converge? No se $S \leq 1$
	DI CONDENSAZIONE DI CAUCHY an è decrescente (deb.), allora
2	
n=1	converge se e sols se $\sum_{K=1}^{\infty} 2^{K} a_{2K}$ converge diverge
2 - 5	converge $x \in S$ $x \in$
1=1 1	

Teoria dei Numeri 1 (Advanced) – Andrea Bianchi


Teoria dei Numeri 1 (Advanced) – Andrea Bianchi


Teoria dei Numeri 1 (Advanced) – Andrea Bianchi

Variazione	sul tema:	= 1 (wod 4)	= + 90	
	n=2 ' j			dispri (tutto in IN)
n si so	crive come s anti modi	omma diqu	.adrati uz+	v² con u, v € Z
	oli Ganss		= (u + iv)(v)	(-iv)=m-m
Abbiame	ogia visto	che i primi	= 3 (mad 4)	devono
Se	p; xi n	x; pari		
	oleve di			
p; = 4	9; 9;			primi = 1 (4).
$n = i^t$	(1+;)20x 9 21	· - 9 · · · · ·	·9 n . 9 n	$= m \cdot \overline{m}$
m ole	re overe la fa	orma 12 (1+1) 2 9 1	9, 9n 9n
	Y			in $(\alpha; +1)$ modi
-> n s	i scrive one u, v G 1/2.	U ² tV in	4 (2 111)	(dn+1) moch
Per casa	; sistemare	i particolar	i sulla conve	rgm22/divergun22

Teoria dei Numeri 1 (Advanced) – Andrea Bianchi

Teoria dei Numeri 1 (Advanced) – Andrea Bianchi

Teoria dei Numeri 1 (Advanced) – Andrea Bianchi

	Stuge Settler 2010 Hitelite Haranteea
Quintí $\frac{1}{1-\frac{1}{e}}$	2 = +0 , m la
$2 = \log \left(1 + \frac{1}{p-1}\right)$) = + 40
	$\geq \frac{1}{\rho-1} = +\infty$ $\rho = 1$
ma alla anche	$\sum_{0 \equiv 1} \frac{1}{p} = +\infty$
Teo (Dirichlet) Se	a la none corrimi allora
p grimb p = a (mod b)	$=+\infty$
D'ora in poi niente più	
Sia f: No -> C fè moltiplicativa	una funzione (spesso a valori naturali) se f(mn) = f(m).f(n)
V m, n coprimi. fe completamente mo	oltiplicativa se (mn)=f(m)f(n)
Esempio f(n)=1	sempre.
Esampio f(n) =	1 se n è coprimo con K O oltrimenti

Teoria dei Numeri 1 (Advanced) – Andrea Bianchi

Stantipato integrate active testioni
Esempio q(n) è moltiplicativa, ma non compl.
[\(\tau \) = \(\tau \) \\ \limin \(\tau \) \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
$\int \sigma(n) = \sum d \int e' molt., man nen e.m.$
Escapio di prima $f(n) = \frac{1}{y} + \{(u,v) : n = u^2 + v^2\}$
i moltiplicativa! In generale posso considerze, data una funzione
In generale posso considerve, data una funzione F: No -> C, la serie Formale di Dirichlet associata
F(n) +(s un operatione di
al grodotto è un men freme din
$\left(\begin{array}{c} \frac{2}{5} & F(n) \\ \frac{2}{5} & \frac{1}{5} & \frac{1}{5} \end{array}\right) \left(\begin{array}{c} \frac{2}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \end{array}\right) = \frac{2}{5} \left(\begin{array}{c} \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \end{array}\right)$
Esempio importante M: No -> {0, 1, -1}
Funz. di Möbius $N = p_1 - p_n$ $M(n) = 0$ Se c'è un $\alpha; \ge 2$ $da qua drati)$
altrimat: 1 se K pari
Mè mattiplicativa.

Teoria dei Numeri 1 (Advanced) – Andrea Bianchi

$$\sum_{n=1}^{\infty} \frac{\mu(n)}{n^{5}} = \prod_{\substack{p \text{ prime}}} \left(1 - \frac{1}{p^{5}}\right)$$

$$\sum_{n=1}^{\infty} \frac{1}{n^{5}} = \prod_{\substack{p \text{ prime}}} \left(1 - \frac{1}{p^{5}}\right)$$

$$\sum_{n=1}^{\infty} \frac{1}{n^{5}} = \prod_{\substack{p \text{ prime}}} \left(1 - \frac{1}{p^{5}}\right)$$

$$\sum_{n=1}^{\infty} \frac{1}{n^{5}} = \prod_{\substack{p \text{ prime}}} \left(1 - \frac{1}{p^{5}}\right)$$

$$\sum_{n=1}^{\infty} \frac{1}{n^{5}} = \prod_{\substack{p \text{ prime}}} \left(1 - \frac{1}{p^{5}}\right)^{2} = \left(\sum_{\substack{n \text{ prime}}} \frac{1}{n^{5}}\right)^{2}$$

$$\sum_{n=1}^{\infty} \frac{1}{n^{5}} = \prod_{\substack{p \text{ prime}}} \left(1 + \frac{1}{p^{5}}\right)^{2} = \left(\sum_{\substack{n \text{ prime}}} \frac{1}{n^{5}}\right)^{2}$$

$$\sum_{\substack{p \text{ prime}}} \frac{1}{n^{5}} = \prod_{\substack{p \text{ prime}}} \left(1 + \frac{1}{p^{5}}\right)^{2} = \left(\sum_{\substack{n \text{ prime}}} \frac{1}{n^{5}}\right)^{2}$$

$$\sum_{\substack{p \text{ prime}}} \frac{1}{n^{5}} = \prod_{\substack{p \text{ prime}}} \left(1 + \frac{1}{p^{5}}\right)^{2} = \left(\sum_{\substack{n \text{ prime}}} \frac{1}{n^{5}}\right)^{2}$$

$$\sum_{\substack{p \text{ prime}}} \frac{1}{n^{5}} = \prod_{\substack{p \text{ prime}}} \left(1 + \frac{1}{p^{5}}\right)^{2} = \left(\sum_{\substack{n \text{ prime}}} \frac{1}{n^{5}}\right)^{2}$$

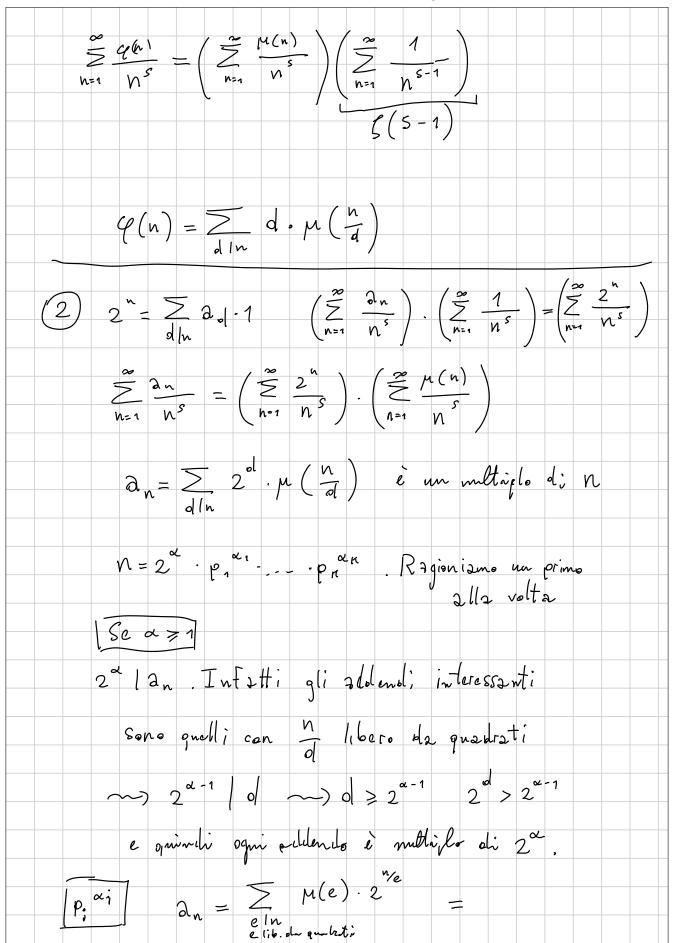
$$\sum_{\substack{p \text{ prime}}} \frac{1}{n^{5}} = \prod_{\substack{p \text{ prime}}} \left(1 + \frac{1}{p^{5}}\right)^{2} = \left(\sum_{\substack{n \text{ prime}}} \frac{1}{n^{5}}\right)^{2}$$

$$\sum_{\substack{p \text{ prime}}} \frac{1}{n^{5}} = \prod_{\substack{p \text{ prime}}} \left(1 + \frac{1}{p^{5}}\right)^{2} = \left(\sum_{\substack{p \text{ prime}}} \frac{1}{n^{5}}\right)^{2}$$

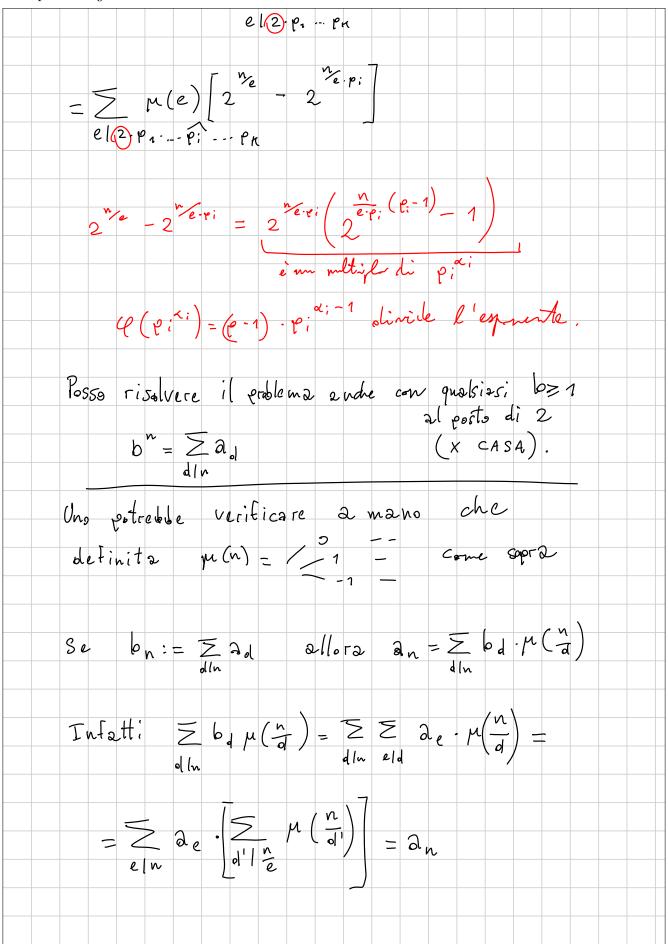
$$\sum_{\substack{p \text{ prime}}} \frac{1}{n^{5}} = \prod_{\substack{p \text{ prime}}} \left(1 + \frac{1}{p^{5}}\right)^{2} = \left(\sum_{\substack{p \text{ prime}}} \frac{1}{n^{5}}\right)^{2}$$

$$\sum_{\substack{p \text{ prime}}} \frac{1}{n^{5}} = \prod_{\substack{p \text{ prime}}} \left(1 + \frac{1}{p^{5}}\right)^{2} = \left(\sum_{\substack{p \text{ prime}}} \frac{1}{n^{5}}\right)^{2}$$

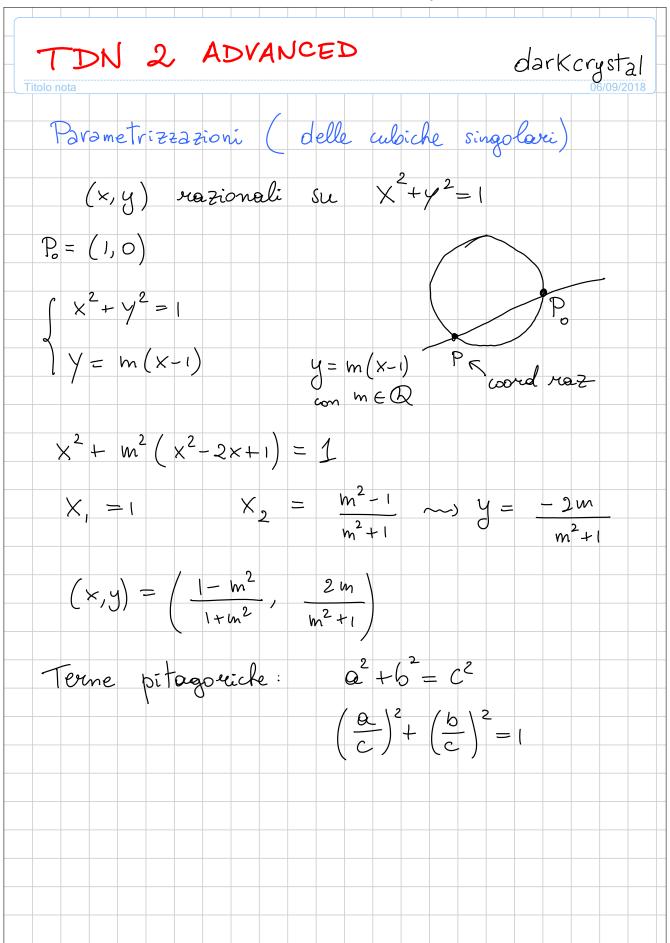
$$\sum_{\substack{p \text{ prime}}} \frac{1}{n^{5}} = \prod_{\substack{p \text{ prime}}} \left(1 + \frac{1}{p^{5}}\right)^{2} = \left(\sum_{\substack{p \text{ prime}}} \frac{1}{n^{5}}\right)^{2}$$

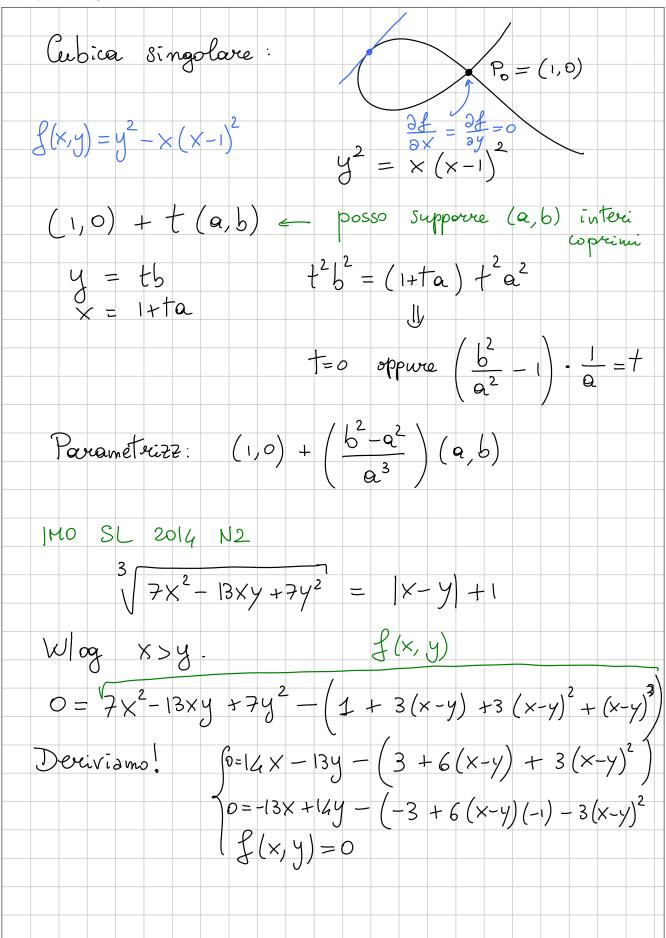

$$\sum_{\substack{p \text{ prime}}} \frac{1}{n^{5}} = \prod_{\substack{p \text{ prime}}} \left(1 + \frac{1}{p^{5}}\right)^{2} = \left(\sum_{\substack{p \text{ prime}}} \frac{1}{n^{5}}\right)^{2}$$

$$\sum_{\substack{p \text{ prime}}} \frac{1}{n^{5}} = \prod_{\substack{p \text{ prime}$$


Teoria dei Numeri 1 (Advanced) – Andrea Bianchi

Stampato integrate dette tezion	u t	05
Per casa		
(3) Sia an	una successione crascont	e di naturali
	= an, -an debolment	
Sappiamo ch	ne Vitj, a; e aj	Sono coprimi.
	he $\geq \frac{1}{a_n}$ conv	
	d n	T (PEA))
M19 Problems	s in Elementary Number 7 to da a 1 = 1 do	= K ≥ 2 , poi
John E Collins		1, 1
& n e il più	piado intero positivo	diverse old
2, 2 _{n-1}	e non copimo co	$n = 2_{n-1}$
Jesi Mili gli	i interi positivi prim	2 o par compaiono.
20		
$1) > \frac{\varphi(n)}{\varepsilon}$	$= \prod_{p \in P} \left(1 + \frac{p-1}{p} + \frac{p-1}{p}\right)$	25 + =
n=1 N	prins	
		2
	$1 + \frac{p-1}{p^s} \left(1 + \frac{p}{p^s} + \frac{1}{p^s}\right)$	025 +
prims	P	
	/ 1	
7	1 + 2 1	0 1-5
t y tun		
	, 00	/ 20 (P(n) \ 20 M
Z ((l l) =	$= N \qquad \left(\stackrel{?}{\geq} \stackrel{1}{\downarrow} \stackrel{1}{\downarrow} \right)$	$ \left(\begin{array}{c} $
dIn	(N 21 N	


Teoria dei Numeri 1 (Advanced) – Andrea Bianchi


Teoria dei Numeri 1 (Advanced) – Andrea Bianchi

Teoria dei Numeri 1 (Advanced) – Andrea Bianchi

Teoria dei Numeri 2 (Advanced) – Davide Lombardo

Teoria dei Numeri 2 (Advanced) – Davide Lombardo

$$\begin{cases}
0 = x+y \\
0 = 14x + 13x - (3 + 12x + 12x^{2}) \\
0 = 7x^{2} + 13x^{2} + 7x^{2} - (1 + 6x + 12x^{2} + 8x^{3})
\end{cases}$$

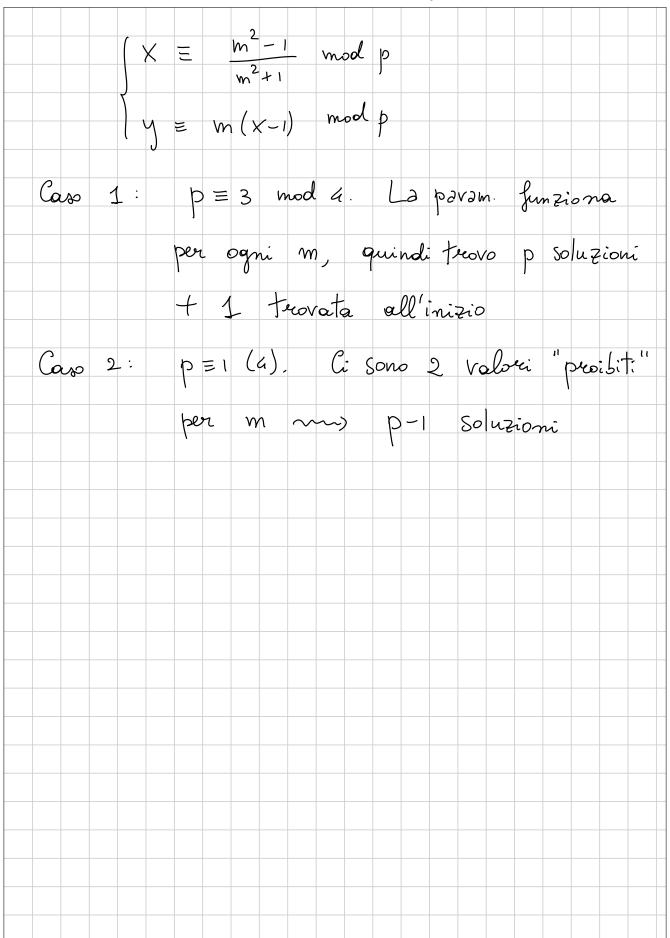
$$\begin{cases}
y = -x \\
0 = -12x^{2} + 15x - 3
\end{cases}$$

$$\begin{cases}
0 = x + y \\
0 = -12x^{2} + 15x - 3
\end{cases}$$

$$\begin{cases}
x = 1 + 2x + 12x^{2} + 8x^{3}
\end{cases}$$
Runto bello: $(1, -1)$

$$\begin{cases}
x = 1 + 2x + 15x - 3 \\
0 = -8x^{3} + 15x^{2} - 6x - 1
\end{cases}$$

$$\begin{cases}
x = 1 + 2x + 15x - 3 \\
0 = -8x^{3} + 15x^{2} - 6x - 1
\end{cases}$$


$$\begin{cases}
x = 1 + 2x + 12x^{2} + 8x^{3}
\end{cases}$$

$$\begin{cases}
x = 1 + 2x^{2} + 15x - 3 + 12x^{2} + 12x^{2}$$

Teoria dei Numeri 2 (Advanced) – Davide Lombardo

Sepla-b	, pta	$-2a^{2}+5ab-2b^{2}$
		$= -2a^2 + 5a^2 - 2a^2$
		$\equiv a^2 \mod p$ $\equiv 0$
Soluzioni il	ntere: Oc = b ±	=
		Jumero delle coppie (x,y) tc.
	$v^2 \equiv 1 \pmod{2}$	
	(1,0) funziona	
Sia (X,	y) una quale	unque soluz con X 71
Albra a	$lefinisco m = \frac{\alpha}{x}$	$\frac{y}{y} \in \mathbb{Z}/2$
		$\int_{0}^{1} x^{2} + y^{2} = 1 (p)$ $\int_{0}^{1} y = m(x-1) (p)$
	$\int_{0}^{2} \left(X - I \right)^{2} \equiv I \left(p \right)$	
l y = v	n (X-1)	
-)	$\int X + 1 + m^2 (x)$	
	1 y = m (x-1)	(mod p)

Teoria dei Numeri 2 (Advanced) – Davide Lombardo

Teoria dei Numeri 2 (Advanced) – Davide Lombardo

SOLLEVAMENTO DI HENSEL
Machinario per passare da congruenze mod p
a Congruenze mod p
Lemma Sia g(x) e Z[x] e on e Z.
Supponiano: [f(a) = 0 mod p
$\left \begin{cases} f'(a) \neq 0 \text{ mod } p \end{cases} \right $
Albora Vn esiste una soluzione della congr.
$f(x) \equiv 0 \mod p^m$
Scelao X = a + pk
$f(\alpha+pK)=f(\alpha)+pK \cdot q(\alpha+pK)$
Soiro f(a) = pm: voglio risolvere
0 = pm + pR q(a+pK) mod p2
$0 \equiv m + (k) q(a) \mod p$
Si risolve \Leftarrow 0/(a) \neq 0 mod p \Leftarrow) $f'(a) \neq 0$ (p)
D'altro canto, se derivo $f(x) = f(a) + (x-a) q(x)$

Teoria dei Numeri 2 (Advanced) – Davide Lombardo

trovo
$$f'(x) = q(x) + (x-a) q'(x)$$
 $\Rightarrow f'(\alpha) = q(a)$

Consequenza $a^{\sharp o} \stackrel{(p)}{e'}$ residuo quadre. mool p^n
 $(n > 1, p \text{ disparie}) \stackrel{(p)}{c=1}$ lo e' mool p
 $f(x) = x^2 - a$
 $f(x) = x^2 - a = 0$ (p) abbia una soluzione

Se $b^2 \equiv a \pmod{p} \Rightarrow f'(b) = 2b \not\equiv o(p)$

Esencizio $y^2 = p^3 + 10p^2 - 6p + 1$

Mool $p \Rightarrow y^2 \equiv \pm 1 \pmod{p}$

Mool $p^2 \Rightarrow y^2 \equiv \pm 1 \pmod{p}$
 $y = 1 + 2kp = -6p + 1 \pmod{p}$
 $y = 1 + 2kp = -6p + 1 \pmod{p}$
 $y = 1 - 3p \pmod{p}$

Teoria dei Numeri 2 (Advanced) – Davide Lombardo

	T T	iette tezi	0111							
	9 1	/ p ² -	2	100	J3					
	J, 1	C ρ :	= p ²	ma						
		2K =	= 1	mod	p					
					'					
-)	y	= 1	- 3 b	+ +	2 p	+ '	mult:p	b di	P2	
						2 +		jp3		
Swar	oniau					1 -3p				
		8			0	1 31		2 1	Γ	
						7 5	,/	2,		
					2	- P/	2 +1	/2 -	3p+1	
					2	- P ²	1/2 +	$p^2/2$		
				, ,						
L	12 >	1	(p^3-1)	$(o^2)^2$	$> \frac{1}{2}$	- p ⁴	(p-1)	_ >	54	
		9	•							
þ	3 +10p	2-6p	+1 5	₹ <i>b</i> 3	+10 E	2		2 D ≤	p+10	
1	1	1			1					
							>	-) b <	: 3	
e	Simi	I m ceit	é pe	r j≥	0					
1/00	·	c 0	: p=	- 2 1/-	L.O					
υσγα	che	20°C	1. 100	. J, y -	110					

Teoria dei Numeri 2 (Advanced) – Davide Lombardo

Soluzioni di
$$a^2 + b^2 = 2C^2 \iff (\frac{a}{c})^2 + (\frac{b}{c})^2 = 2$$

Come prima! $a = b = c = 1$
 $x = 1 + at$

Sviluppo, faccio il conto, viene

 $y = 1 + bt$

Fatto (difficile) Fer le equaz. di 2° grado in

2 variabili razionali: c'e' una soluz razional

se e solo se ci sono soluz mod p" $\forall p \forall n$

Tongenti $f(x,y) = 0$ $f(x_0,y_0) t_0 f(x_0,y_0) = 0$

La direzione di max crescita e'

 $f(x_0,y_0) = f(x_0,y_0) + 2f(x_0,y_0) + 2f(x_0,y_0) = 0$
 $f(x_0,y_0) = f(x_0,y_0) + 2f(x_0,y_0) + 2f(x_0$

Teoria dei Numeri 2 (Advanced) – Davide Lombardo

Stampato integrate aetie tezioni
Morale: la top e' perpendicolore a (28/2x)
Horale: la toj et perpendicolore a (28/24)
Esempio g(x,y) = x2+42-1
$\partial f/\partial x = 2x$ $\partial f/\partial y = 2y$
Preendiamo (x,y) = (1/\siz, 1/\siz)
Direzione max crescita: $// \left(\frac{\sqrt{2}}{\sqrt{2}}\right) // \left(\frac{1}{1}\right)$
tg // (1)
Hensel in 2 variabili
Trensel in 2 variabili
$f(x,y) \in \mathbb{Z}[x,y]$; $f(\alpha,b) \equiv 0 \mod p$
Se $\frac{\partial f}{\partial x}(a,b) \neq 0$ OPPURE $\frac{\partial f}{\partial y}(a,b) \neq 0$ (p)
allora trovo soluzioni modulo p

Teoria dei Numeri 2 (Advanced) – Davide Lombardo

Containe soluzioni mad p

$$x^{2} + y^{2} \equiv 1 \pmod{p}$$

$$\sum_{\alpha+b=1} N(x^{2} \equiv a) \cdot N(y^{2} \equiv b) = \sum_{\alpha+b=1} (1 + (\frac{a}{p}))(1 + (\frac{b}{p})) = \sum_{\alpha+b=1} (1 + (\frac{a}{p}))(1 + (\frac{b}{p})) = \sum_{\alpha+b=1} (1 + (\frac{a}{p}))(1 + (\frac{b}{p})) = \sum_{\alpha+b=1} (\frac{a}{p})(1 + (\frac{a}{p}))(1 + (\frac{b}{p})) = \sum_{\alpha+b=1} (\frac{a}{p})(1 + (\frac{a}{p}))(1 + (\frac{b}{p})) = \sum_{\alpha+b=1} (\frac{a}{p})(1 + (\frac{a}{p}))(1 + ($$

Teoria dei Numeri 2 (Advanced) – Davide Lombardo

Siumpuio inicegrate desicono
CARATTER Un carattère é una funzione
$\chi: \mathbb{F}^* \longrightarrow \{1, 5_{p-1}, \dots, 5_{p-1}\}$
tale che $X(ab) = X(a) X(b)$
[in Soldoni: $\chi(g) = S_{p-1}$
$\chi(q^{\bar{n}}) = \sum_{p=1}^{\alpha_i}$
NON NECESSARIAMENTE (Q, p-1) = (
Escupio $\chi(n) = \left(\frac{m}{p}\right)$
Per compolita : $\chi(0) = 0$
Domanda Quanti cavatteri ci sono? p-1
Uno di questi e' il carattere che fa sempre 1
Per questo corrattere X_0 si pone $X_0(0) = 1$
Fissians X constere. Quanto for $\sum \chi(\alpha) = 0$.
$(se X \neq X_0)$ qeH_p
$\sum \chi(a) = \sum \chi(a) = \sum \chi(g^i)$
actp a=0
= 2 3 3 p - 1 = 0

Teoria dei Numeri 2 (Advanced) – Davide Lombardo

	Buyer Servior 2010 Bivello Havaneea
Viceveusa: $\sum_{\alpha=a^i}^{7} \chi(\alpha) = \frac{1}{2}$	$\sum_{p=1}^{p-2} b_i$
$a = gi$ \times	p=0 ,
Def. X e' di ordine n	p-1 se la sua
immagine ha ordine n	
$E \times \left(\frac{\bullet}{p}\right)$ how ordine 2	
Lemma Sia X un covattere	di ordine n 1p-1
Allowa $N(x^n \equiv a \mod p)$ =	$= \sum_{i=0}^{\infty} \chi(\alpha)^{i}$
Dim- Se c'è una soluz. ce i	ne sono M.
$N(x^m \equiv 1 (p)) = m$	$g^{\frac{p-1}{m}}, g^{\frac{p-1}{m}}, \dots$
Soluzioni (=) Q = 9 mk	
$\sum_{i=1}^{n} \chi(\alpha)^{i} = \sum_{i=1}^{n} \alpha^{i}$	$1^{\hat{i}} = m$
No soluz (=) $a = g^{\prime\prime}$ con	ntec
$(+) \chi(\alpha) = 5_{m}$	
$\sum_{i=0}^{N-1} S_m = 0 $ Se	ntr

Teoria dei Numeri 2 (Advanced) – Davide Lombardo

Teoria dei Numeri 2 (Advanced) – Davide Lombardo

Teoria dei Numeri 2 (Advanced) – Davide Lombardo

Teorem	a Se	χ., '	χ_{\imath}	Sono	cara	teri ((on	
χ, =	ŧι, χ	2 \$1,	χ	χ_{2}	≢ (al	lora	
	0.4h=1	$\chi_1(a)$	$\chi_{2}($	b) =	9	(χ_{l})	$g(x_2)$	_
In poer								
Tornanc								
								(6)
N(y2+x5	7=1 (1) = c	2+b=1	(1+	· X(a)	++	X(a)')('	+ (=))
	= þ	+ 4 1	ermin	i oli	ord	line	VP	
N (ay2+	- b x 3 =	= c (p	1) =	_				
= 2 u) +V = C	s (ay²	= u)	N (×3 =	v)		
=	∑ +√ = C	$N(y^2 =$	a-14) N(x ³ = {	p ⁻¹ v		
= (4)) +V= C	1+(-	1-1u))(1	+ X	(b-1	r)+X(b ⁻¹ v) ²

Teoria dei Numeri 2 (Advanced) – Davide Lombardo

$$= p + \sum_{u+v=c} \left(\frac{a^{-1}u}{p}\right) \times (b^{-1}v) + \dots$$

$$= p + \left(\frac{a^{-1}}{p}\right) \times (b^{-1}) \sum_{u+v=c} \left(\frac{u}{p}\right) \times (v) + \dots$$

$$= p + \left(\frac{a^{-1}}{p}\right) \times (b^{-1}) \left(\frac{c}{p}\right) \times (c) \sum_{u+v'=1} \left(\frac{u^{i}}{p}\right) \times (v)$$

$$= p + \left(\frac{a^{-1}}{p}\right) \times (b^{-1}) \left(\frac{c}{p}\right) \times (c) \sum_{u+v'=1} \left(\frac{u^{i}}{p}\right) \times (v)$$

$$= p + \left(\frac{a^{-1}}{p}\right) \times (b^{-1}) \sum_{u+v=c} \left(\frac{u}{p}\right) \times (v) + \dots$$

$$= p + \left(\frac{a^{-1}}{p}\right) \times (b^{-1}) \sum_{u+v=c} \left(\frac{u}{p}\right) \times (v) + \dots$$

$$= p + \left(\frac{a^{-1}}{p}\right) \times (b^{-1}) \sum_{u+v=c} \left(\frac{u}{p}\right) \times (v) + \dots$$

$$= p + \left(\frac{a^{-1}}{p}\right) \times (b^{-1}) \sum_{u+v=c} \left(\frac{u}{p}\right) \times (v) + \dots$$

$$= p + \left(\frac{a^{-1}}{p}\right) \times (b^{-1}) \sum_{u+v=c} \left(\frac{u}{p}\right) \times (v) + \dots$$

$$= p + \left(\frac{a^{-1}}{p}\right) \times (b^{-1}) \sum_{u+v=c} \left(\frac{u}{p}\right) \times (v) + \dots$$

$$= p + \left(\frac{a^{-1}}{p}\right) \times (b^{-1}) \sum_{u+v=c} \left(\frac{u}{p}\right) \times (v) + \dots$$

$$= p + \left(\frac{a^{-1}}{p}\right) \times (b^{-1}) \sum_{u+v=c} \left(\frac{u}{p}\right) \times (v) + \dots$$

$$= p + \left(\frac{a^{-1}}{p}\right) \times (b^{-1}) \sum_{u+v=c} \left(\frac{u}{p}\right) \times (v) + \dots$$

$$= p + \left(\frac{a^{-1}}{p}\right) \times (b^{-1}) \sum_{u+v=c} \left(\frac{u}{p}\right) \times (v) + \dots$$

$$= p + \left(\frac{a^{-1}}{p}\right) \times (b^{-1}) \sum_{u+v=c} \left(\frac{u}{p}\right) \times (v) + \dots$$

$$= p + \left(\frac{a^{-1}}{p}\right) \times (b^{-1}) \sum_{u+v=c} \left(\frac{u}{p}\right) \times (v) + \dots$$

$$= p + \left(\frac{a^{-1}}{p}\right) \times (b^{-1}) \sum_{u+v=c} \left(\frac{u}{p}\right) \times (v) + \dots$$

$$= p + \left(\frac{a^{-1}}{p}\right) \times (b^{-1}) \sum_{u+v=c} \left(\frac{u}{p}\right) \times (v) + \dots$$

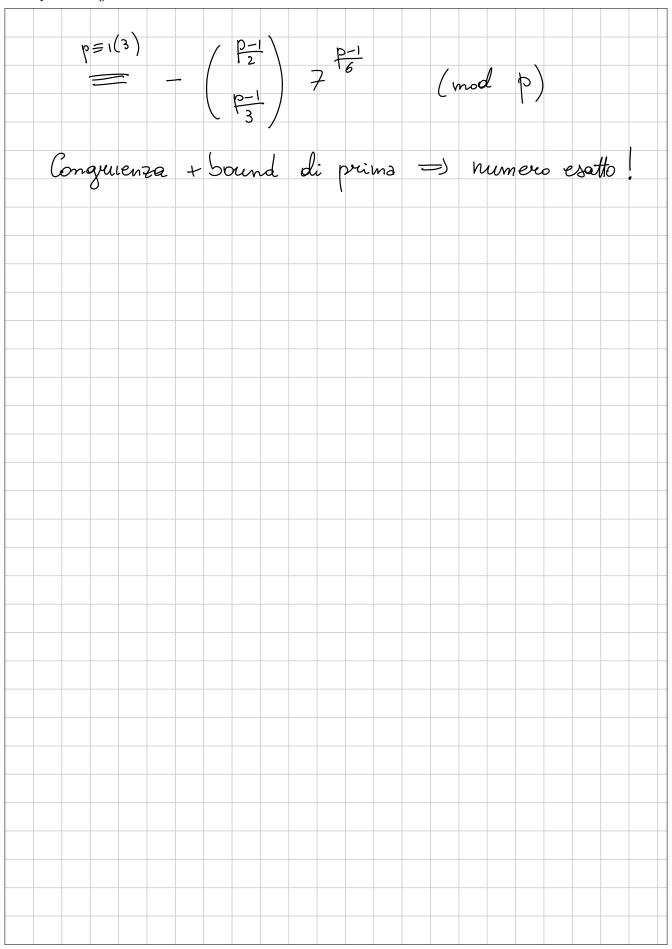
$$= p + \left(\frac{a^{-1}}{p}\right) \times (b^{-1}) \sum_{u+v=c} \left(\frac{u}{p}\right) \times (v) + \dots$$

$$= p + \left(\frac{a^{-1}}{p}\right) \times (b^{-1}) \sum_{u+v=c} \left(\frac{u}{p}\right) \times (v) + \dots$$

$$= p + \left(\frac{a^{-1}}{p}\right) \times (b^{-1}) \sum_{u+v=c} \left(\frac{u}{p}\right) \times (v) + \dots$$

$$= p + \left(\frac{a^{-1}}{p}\right) \times (b^{-1}) \sum_{u+v=c} \left(\frac{u}{p}\right) \times (v) + \dots$$

$$= p + \left(\frac{a^{-1}}{p}\right) \times (b^{-1}) \times (b^{-1$$


Teoria dei Numeri 2 (Advanced) – Davide Lombardo

Cosa fare quando tutto fallisce?
$2y^2 = x^4 - 17$
1 V Din che ci sono solvez mod p ^m Yp Yn
2 · Din che non ci sono soluzioni intere
Moduli: ≤ 7 , oppure 17
2. Idea: combinare informazioni modulo preini
diversi con la reciprocità quadratica
Unici primi che ha senso guardare: quelli modulo
i quali ci sono solo 2 termini.
Fuardians module un divisore p di 4 / P / - / 9 / () 12 12
$\left(\begin{array}{c} P \\ Q \end{array}\right) = \left(\begin{array}{c} Q \\ P \end{array}\right) \cdot \left(\begin{array}{c} -1 \end{array}\right) \cdot \left(\begin{array}{c} 2 \\ 2 \end{array}\right)$
$\begin{pmatrix} 4 \\ p \end{pmatrix} \text{ se } p \equiv l(4) \text{ or } q \equiv l(4)$

Teoria dei Numeri 2 (Advanced) – Davide Lombardo

Sie ply. Allow
$$0 = x^4 - 17 \mod p$$
 $0 = x^4 - 17 \mod p$
 $0 = x^4 -$

Teoria dei Numeri 2 (Advanced) – Davide Lombardo

Teoria dei Numeri 2 (Advanced) – Davide Lombardo

TON ADVANCED 3 (PELL ...) 07/09/2018 Equazione di Pell $x^2 - dy^2 = 1 \qquad d \in \mathbb{Z} \quad d \neq \mathbb{D}$ (x - Jd y) (x + Jd y) Def. $N(x+y\sqrt{d}) = x^2 - dy^2$ $N((x_1+y, \sqrt{d})(x_2+y_2\sqrt{d})) = N(x_1+y, \sqrt{d})N(x_2+y_2\sqrt{d})$ Oss Supponiamo di conoscere una soliez di $\chi^2 - dy^2 = m$ e una di $\chi^2 - dy^2 = n$ Allora conosciamo una sol di x2 - dy2 = mn $N(x_1 + \sqrt{d}y_1) = m$, $N(x_2 + \sqrt{d}y_2) = n$ Posso prendere X2 = X, X2 + dy, y2 $y_3 = x_1y_2 + x_2y_1$ TEOREMA Esistono oo soluzioni intere di $x^2 - dy^2 = 1$

Teoria dei Numeri 3 (Advanced) – Davide Lombardo

Din Per Dirichlet esistono infinite coppie
(p, 9) di interi positivi t.c.
$\left \sqrt{q} - \frac{1}{q^2} \right < \frac{1}{q^2}$
Uno vorviebbe prendere x = p e y = 9
$\left \left x^2 - dy^2 \right = \left \left(x - y\sqrt{d} \right) \left(x + y\sqrt{d} \right) \right $
$=\left y\left(\frac{x}{y}-\sqrt{d}\right)\left(x+y\sqrt{d}\right)\right \leq\frac{x+y\sqrt{d}}{y}$
$\frac{10\sqrt{3}}{\sqrt{3}}$ $\frac{2\sqrt{4}}{\sqrt{4}}$
Per pigeonhole, c'é un qualche intero k, con
K < 2 vol +1, che si socive come
$p^2 - 0 q^2 = k$
per infinite coppie (P,9)
Prendiamone 2, (P1, 91) e (P2, 92)
$N\left(\frac{p_1+q_1\sqrt{d}}{p_2+q_2\sqrt{d}}\right) = \frac{N\left(\frac{p_1+q_1\sqrt{d}}{p_2+q_2\sqrt{d}}\right)}{N\left(\frac{p_2+q_2\sqrt{d}}{p_2+q_2\sqrt{d}}\right)} = \frac{R}{R} = 1$
A+BVd con A,B razionali

Teoria dei Numeri 3 (Advanced) – Davide Lombardo

$$\begin{array}{c} \left(p_1+q_1\sqrt{d}\right)\left(p_2-q_2\sqrt{d}\right) & \left(p_1p_2-dq_1q_2\right)+\left(p_2q_1-q_2p_1\right)\sqrt{d} \\ \hline \left(p_2+q_2\sqrt{d}\right)\left(p_2-q_2\sqrt{d}\right) & K \\ \hline Affinché : coeff. Siano interú occorre e basta che
$$\begin{array}{c} \left(p_1p_2-dq_1q_2\right) \equiv O\left(K\right) \\ \left(p_1p_2-dq_1q_2\right) \equiv O\left(K\right) \\ \left(p_2q_1-q_2p_1\right) \equiv O\left(K\right) \\ \end{array} \begin{array}{c} \left(p_1p_2-dq_1q_2\right) \equiv O\left(K\right) \\ \left(p_1p_2-dq_1q_2\right) \equiv O\left(K\right) \\ \end{array} \begin{array}{c} \left(p_1p_2-dq_1q_2\right) \equiv O\left(K\right) \\ \end{array} \begin{array}{c}$$$$

Teoria dei Numeri 3 (Advanced) – Davide Lombardo

Statisfacto stategrate active testions	
Struttura di tutte le soluzioni	
Esiste $u = x_0 + \sqrt{d} y_0$ con $N(u) = 1$	
tale che TUTTE le soluzioni "siano" del	
tipo ± UK con KEZ	
Più precisamente: $x = (\chi_0 + \sqrt{d} \chi_0)^k + (\chi_0 - \sqrt{d} \chi_0)^k$	10)
2	
$= \underbrace{u^{k} + u^{-k}}_{2}$	
$e y = u^{\kappa} - u^{-\kappa}$	
2 Vd	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,
f (fondamentale)	
Sia & il minimo numero reale >1 che si	
sorive come 21+ Jdy, x2-dy2=1	
Sia poi s=a+bJd una soluzione.	
Anche s. f. , KEZ, sono soluzioni.	

Teoria dei Numeri 3 (Advanced) – Davide Lombardo

				Brage Berrior		
Scelgo	K in	modo	che			
Sergo						
	1	٤ ১.	f <	f		
		Solu	zione	Per mini	malita"	
		di	f, e	- = 1		
		->	♦ =	p-K		
				4		
FRAZIO	DNI DI	FAREY				
×2	$^{2}-5y^{2}=$	= 1				
<u>9</u>	7 1 5 7	3		2+3 _	5/	
1	< \sqrt{5} <	1		$\frac{2+3}{1+1} =$	/2	
9		5) +5 -		
1	< \sqrt{5} <	2 ~	_ (ب	2+5 = 7 1+2	73	
9					,	
2	< \sqrt{5} <	± ~ 3 ~	ح-> =	$\frac{2+7}{1+3} = 9$	4 Eco	OLA
	ione fon			+4 15	,	
JO W.Z.	10 110	00001 (1190		9 4		

Teoria dei Numeri 3 (Advanced) – Davide Lombardo

Stantipalo integrate active texioni
Pell generalizzate
$x^2 - dy^2 = \alpha$ $x^2 - dy^2 = 1$ Supponiamo che almeno una soluzione (x_0, y_0)
esista. Allora (26 + 40 Vd) · f Sono
ancora soluzioni
1 Bound su una soluzione
Sia s=xo+yold una soluzione. Allora
posso scegliere K + c. S=sfK C \f, \a. \f
$x = \frac{S + coniugato(S)}{2} = \frac{S + \alpha/S}{2}$
$\leq \frac{1}{2} \text{ max} \left\{ \sqrt{\frac{\alpha}{f}} + \sqrt{\alpha} \cdot \sqrt{f}, \sqrt{\alpha} \cdot \sqrt{f} + \sqrt{\alpha} \right\}$
$=\frac{1}{2}\sqrt{\alpha}\left(\sqrt{f}+\sqrt{f}\right)\left(\frac{\alpha}{2}>0-1\right)$
2 Famiglie di soluzioni
Vorvienmo prendere due solez. $N(S_1) = N(S_2) = a$
e dividere una per l'altra

Teoria dei Numeri 3 (Advanced) – Davide Lombardo

$$\begin{array}{c} x_1 + \sqrt{d}y_1 & x_2 - \sqrt{d}y_2 & (x_1x_2 - dy_1y_2) + \sqrt{d}(x_2y_1 - x_1y_2) \\ \hline x_2 + \sqrt{d}y_2 & x_2 - \sqrt{d}y_2 & \alpha \\ \hline \\ & x_2 + \sqrt{d}y_2 & x_2 - \sqrt{d}y_2 \\ \hline \end{array}$$

$$\begin{array}{c} x_1 + \sqrt{d}y_2 & x_2 - \sqrt{d}y_2 \\ \hline \\ & x_2 + \sqrt{d}y_2 \\ \hline \end{array}$$

$$\begin{array}{c} x_1 + \sqrt{d}y_2 & x_2 - \sqrt{d}y_2 \\ \hline \\ & x_1 + \sqrt{d}y_2 \\ \hline \end{array}$$

$$\begin{array}{c} x_1 + \sqrt{d}y_2 & x_2 - \sqrt{d}y_2 \\ \hline \\ & (y_1, \alpha) = (x_2, \alpha) = 1 \\ \hline \\ & (y_1, \alpha) = (x_2, \alpha) = 1 \\ \hline \\ & (y_1, \alpha) = (x_2, \alpha) = 1 \\ \hline \\ & (y_1, \alpha) = (x_2, \alpha) = 1 \\ \hline \\ & (y_1, \alpha) = (x_2, \alpha) = 1 \\ \hline \\ & x_1 + \sqrt{d}y_2 \\ \hline \\ & x_2 + \sqrt{d}y_2 \\ \hline \\ & x_1 + \sqrt{d}y_2 \\ \hline \\ & x_2 + \sqrt{d}y_2 \\ \hline \\ & x_1 + \sqrt{d}y_2 \\ \hline \\ & x_2 + \sqrt{d}y_2 \\ \hline \\ & x_1 + \sqrt{d}y_2 \\ \hline \\ & x_2 + \sqrt{d}y_2 \\ \hline \\ & x_1 + \sqrt{d}y_2 \\ \hline \\ & x_2 + \sqrt{d}y_2 \\ \hline \\ & x_1 + \sqrt{d}y_2 \\ \hline \\ & x_2 + \sqrt{d}y_2 \\ \hline \\ & x_1 + \sqrt{d}y_2 \\ \hline \\ & x_2 + \sqrt{d}y_2 \\ \hline \\ & x_1 + \sqrt$$

Teoria dei Numeri 3 (Advanced) – Davide Lombardo

Siampaio integrate dette tezioni	30
SOLUZIONI	
$x^2 - 5183y^2 = 2$	5183 = 71.73
	= (72 + 1) (72 - 1)
$\frac{71}{1}$ < $\sqrt{5183}$ < $\frac{72}{1}$	Fondamentale: 72+ 5183
	~ 144
	$\frac{1}{\sqrt{3}} = \frac{1}{2}\sqrt{2}\left(12+1\right) < 13$
	erché $\chi^2 - 5183y^2 \leq$
EX2-51	83 < 0
Piu in generale:	$x^2 - (m^2 - 1)y^2 = m$
ollora o m = J	oppure m e' "grandiello"
vispetto a n.	
• $\chi^2 - py^2 = -1$	N(5) = -1
	$N(s^2) = 1$
p =1 (4)	N(3)=1
$f = a + b \sqrt{p} $ la fo	ndamentale
$k = x + y \sqrt{p} =$	$P(V_f) = -1$
	1 = J = J

Teoria dei Numeri 3 (Advanced) – Davide Lombardo

Teoria dei Numeri 3 (Advanced) – Davide Lombardo

$$Z^{2} - 2y^{2} = 1 \qquad f = 3 + 2\sqrt{2}$$
Soluzione di $Z^{2} - 2y^{2} = 17$: $Z = 5$, $y = 2$

$$Z = -5$$
, $y = 2$

$$Z = -5$$
, $y = 2$

$$Z = \pm \frac{1}{2} \left[\left(\pm 5 + 2\sqrt{2} \right) \cdot \left(3 + 2\sqrt{2} \right)^{k} + \left(\pm 5 - 2\sqrt{2} \right) \left(3 - 2\sqrt{2} \right)^{k} \right]$$

$$Z = \frac{1}{2} \left[\left(5 \pm 2\sqrt{2} \right) \left(3 + 2\sqrt{2} \right)^{k} + \text{coniugato} \right]$$

$$Z = \frac{1}{2} \left[\left(5 \pm 2\sqrt{2} \right) \left(3 + 2\sqrt{2} \right)^{k} + \text{coniugato} \right]$$

$$Z = \frac{1}{2} \left[\left(5 \pm 2\sqrt{2} \right) \left(3 + 2\sqrt{2} \right)^{k} + \text{coniugato} \right]$$

$$Z = \frac{1}{2} \left[\left(5 \pm 2\sqrt{2} \right) \left(3 + 2\sqrt{2} \right)^{k} + \text{coniugato} \right]$$

$$Z = \frac{1}{2} \left[\left(5 \pm 2\sqrt{2} \right) \left(3 + 2\sqrt{2} \right)^{k} + \text{coniugato} \right]$$

$$Z = \frac{1}{2} \left[\left(5 \pm 2\sqrt{2} \right) \left(3 + 2\sqrt{2} \right)^{k} + \text{coniugato} \right]$$

$$Z = \frac{1}{2} \left[\left(5 \pm 2\sqrt{2} \right) \left(3 + 2\sqrt{2} \right)^{k} + \text{coniugato} \right]$$

$$Z = \frac{1}{2} \left[\left(5 \pm 2\sqrt{2} \right) \left(3 + 2\sqrt{2} \right)^{k} + \text{coniugato} \right]$$

$$Z = \frac{1}{2} \left[\left(5 \pm 2\sqrt{2} \right) \left(3 + 2\sqrt{2} \right)^{k} + \text{coniugato} \right]$$

$$Z = \frac{1}{2} \left[\left(5 \pm 2\sqrt{2} \right) \left(3 + 2\sqrt{2} \right)^{k} + \text{coniugato} \right]$$

$$Z = \frac{1}{2} \left[\left(5 \pm 2\sqrt{2} \right) \left(3 + 2\sqrt{2} \right)^{k} + \text{coniugato} \right]$$

$$Z = \frac{1}{2} \left[\left(5 \pm 2\sqrt{2} \right) \left(3 + 2\sqrt{2} \right)^{k} + \text{coniugato} \right]$$

$$Z = \frac{1}{2} \left[\left(5 \pm 2\sqrt{2} \right) \left(3 + 2\sqrt{2} \right)^{k} + \text{coniugato} \right]$$

$$Z = \frac{1}{2} \left[\left(5 \pm 2\sqrt{2} \right) \left(3 + 2\sqrt{2} \right)^{k} + \text{coniugato} \right]$$

$$Z = \frac{1}{2} \left[\left(5 \pm 2\sqrt{2} \right) \left(3 + 2\sqrt{2} \right)^{k} + \text{coniugato} \right]$$

$$Z = \frac{1}{2} \left[\left(5 \pm 2\sqrt{2} \right) \left(3 + 2\sqrt{2} \right)^{k} + \text{coniugato} \right]$$

$$Z = \frac{1}{2} \left[\left(5 \pm 2\sqrt{2} \right) \left(3 + 2\sqrt{2} \right)^{k} + \text{coniugato} \right]$$

$$Z = \frac{1}{2} \left[\left(5 \pm 2\sqrt{2} \right) \left(3 + 2\sqrt{2} \right)^{k} + \text{coniugato} \right]$$

$$Z = \frac{1}{2} \left[\left(5 \pm 2\sqrt{2} \right) \left(3 + 2\sqrt{2} \right)^{k} + \text{coniugato} \right]$$

Teoria dei Numeri 3 (Advanced) – Davide Lombardo

	Stuge Settion 2010 Historia Hawaii
$2+2\sqrt{28n^2+1}$	intero => quadrato
$y^2 = 28\eta^2 + 1$	$y^2 - 7 \cdot 2^2 n^2 = 1$
	$y^2 - 7x^2 = 1$
U = 8 V = 3	8+3 \(\tau^2 = f \)
Conto = in 1	f + f-k il weff di V7 e
	2.
10.41	
pour se e sou	o se le e pouri
$2+2\sqrt{28n^2+1}$	=2+2y=2+1+1
	1 2 10 10 2
	$= \left(\int_{\mathbb{R}^{n}} \left(\int_{\mathbb{R}$
P . 197 L9	$4\sqrt{28} = (8 + 3\sqrt{7})^{\frac{9}{2}}$
f_{28} : 127 +2	4 (28 - (8 + 3) +)

Teoria dei Numeri 3 (Advanced) – Davide Lombardo

$$x^{2}+1=5^{m} \qquad n \quad pani \quad OK$$

$$n=2K+1$$

$$x^{2}+1=5\cdot y^{2} \qquad y=5^{k}$$

$$x^{2}-5y^{2}=-1 \qquad Soluzione: 2+\sqrt{5}$$

$$=(2+\sqrt{5})^{2}$$

$$y=\frac{1}{2\sqrt{5}}\left((2+\sqrt{5})^{2}+1\right)$$

$$y=\frac{1}{2\sqrt{5}}\left((2+\sqrt{5})^{2}+1\right)$$

$$\sqrt{5}(y)=\sqrt{5}\left(2x+1\right) \quad per \quad una \quad apportuna \quad versione \quad oli \quad LTE$$

$$\frac{(2+\sqrt{5})^{2}}{2\sqrt{5}} \lesssim y=5^{\sqrt{5}}(y)=5^{\sqrt{5}}(2x+1)$$

$$2\sqrt{5}$$

$$2TE \quad generale''$$

$$(2+\sqrt{5})^{k}-(2-\sqrt{5})^{k} \quad con(k,5)=1:$$

$$2\sqrt{5}$$

$$\frac{1}{2\sqrt{5}}\left(2^{k}+k\cdot 2^{k-1}\sqrt{5}+\binom{k}{2}2^{k-2}\cdot 5+\binom{k}{3}2^{k-3}\cdot 5\cdot \sqrt{5}+...$$

$$-2^{k}+k\cdot 2^{k-1}\sqrt{5}-\binom{k}{2}2^{k-2}\cdot 5+\binom{k}{3}2^{k-3}\cdot 5\sqrt{5}\right)$$

Teoria dei Numeri 3 (Advanced) – Davide Lombardo

Sterso conto quando
$$K = 5$$
.

Pisolubilità di $X^2 - 2y^2 = 0$

Necessario: $\begin{pmatrix} \frac{2}{p} \end{pmatrix} = +1 \iff p \equiv \pm 1(8)$
 $(X - \sqrt{2}y)(x + \sqrt{2}y) = p \implies \mathbb{Z}[\sqrt{2}]$

FATTORIZZAZIONE

UNICA

Siccome $\begin{pmatrix} \frac{2}{p} \end{pmatrix} = +1$, esiste $n + c$. $p \mid n^2 - 2$
 $\Rightarrow p \mid (m - \sqrt{2})(n + \sqrt{2})$
 $m + \sqrt{2} = p \cdot (a + b\sqrt{2})$
 $p \mid (m + \sqrt{2})(c + d\sqrt{2})$
 $p \mid (a + b\sqrt{2})(c + d\sqrt{2})$
 $p \mid (a + b\sqrt{2})(c + d\sqrt{2})$
 $p \mid (a^2 - 2b^2)(c^2 - 2d^2)$
 $p \mid (a^2 - 2b^2)(c^2 - 2d^2)$

Teoria dei Numeri 3 (Advanced) – Davide Lombardo

$$p = ac + 2bol + V2 (bc + ad)$$

$$bc = -ad$$

$$a^2 - 2b^2 = c^2 - 2d^2 = \pm p$$

$$(a,b) = (c,d) = 1 \quad e \quad quind. \quad a = \pm c$$

$$b = \mp d$$
Sterso reagionamento con $x^2 + 2y^2 = p$: Si risolve se e solo se $(-\frac{1}{p}) = +1$
Come si dimostra la fattorizz. Unica?

Lemma chiave Se "funziona" la olivisione con resto c'e" fattorizzazione unica

"Funziona": c'e" una funzione "grandezza" (a valori interi) t.c. $\forall x, y^{to}$ esistono $q, x \in (dae serve)$

$$+.c. x = q \cdot y + r = grandezza (resto)$$

$$< grandezza (y)$$
Nei casi facili, GRANDEZZA = NORKA

Escupio $2[i]$
Voglo dividere con resto $a+bi$ per $c+oli$.

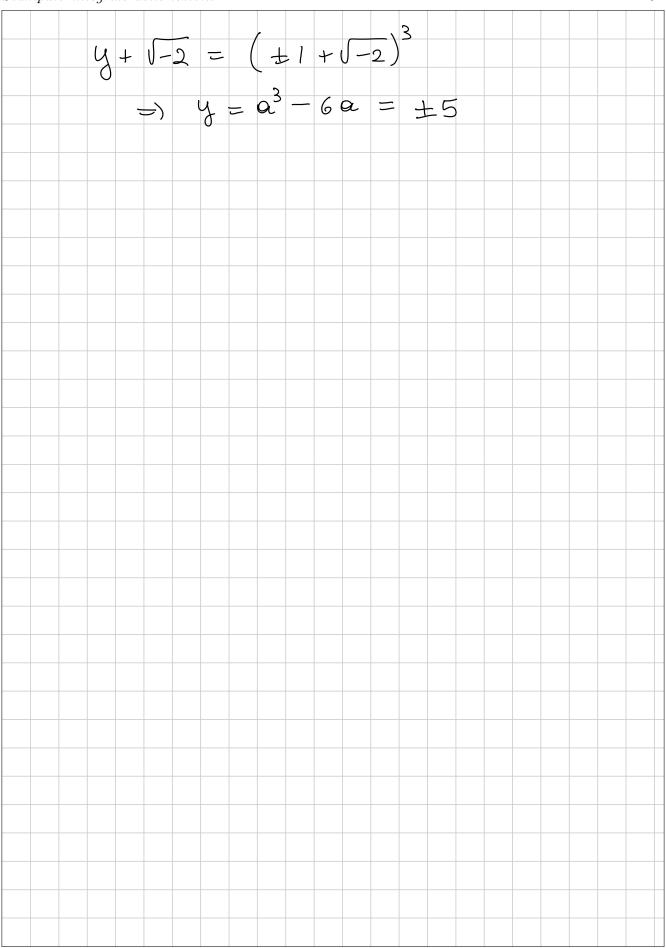
Calcolo $a+bi$ = $(a+bi)(c-di)$ = $(A+r_1)+$

Teoria dei Numeri 3 (Advanced) – Davide Lombardo

dove A, B sono interi e
$$x_1$$
, x_2 sono

razionali di $|\cdot| \le \frac{1}{2}$
 $a+b i = (A+Bi)(c+di) + (x_1+x_2i)(c+di)$

resto $\in Z[i]$


per differenza

 $N(resto) = N(c+di) N(x_1+x_2i)$
 $\leq N(c+di) \cdot \frac{1}{2} < N(c+di)$

Applicazione

 $A = x^2$
 $y^2 + \lambda = x^3$ ~> $(y+\sqrt{-2})(y-\sqrt{-2}) = x^3$
 $y = (y+\sqrt{-2}, y-\sqrt{-2}) = 1$
 $y = (y+\sqrt{-2}, 2\sqrt{-2}) = 1$
 $y = (y+\sqrt{-2}, 2$

Teoria dei Numeri 3 (Advanced) – Davide Lombardo

Teoria dei Numeri 3 (Advanced) – Davide Lombardo

Senior 2018 - P Advanced - Anér
Titolo nota 02/09/2018
Teorema (Van der Waerden, 1927)
Siano 7 > 1 un numero di colori e K > 2
una lunghezza. Esiste un numero naturale
N = W (r, K) con que sta proprieta: supponiamo
di colorare con 12 colori i numeri {1,, N}.
di colorare con 12 colori i numeri {1,, N}. allora esiste certamente una progressione aritmetica di lunghezza K monocromatica.
055 Se colorare N naturali basta, anche colorarne N+m basta.
Domanda interessante Capire qual è il minimo N con la preprietà sopra. DIFFICILE
Con la gregoriela soprel. DIFFICILE LASCIAMO PERDERE
Strategia Vogliamo dim. che Yti, Yz eviste W (z, K). Introducremo un numero
esiste W (2,11). Introductemo un numero
W(z, k, h) che sarà un naturale (abb. grande)
per cui vale una proprietà che dipende da
7771, h 72, h 71. Di mostreramo che
Vh, rc, h esiste W(7, h, h). Poi sara
eviolente che se esiste w (2, K,1) allora

Preliminari (Advanced) – Andrea Bianchi

es	isto	2	W	(7	., K)													
Par	aliv	c	he		W ([r,	и,	h)	e	sist	e	V	LSI 6	mo	L	m (in d	u Zi	one
str	an a	_	Din	۸.	pe	r 1	nol.		ડેપ	k e	e l) '	CON	g in	nta	m C	n te		
																			(k,h)
P, 13														١.					
1 , 1.	, ,	al [b]		<u> </u>	+.		n =	- 16	•	-	: _/	. 21-	. 0	, , ,		٧ ۾ لا	V.50 V	20.0	
	₽	jca s.	sıva ;	ma N	w (c	,	h	, e	1 6	er A	INOL	u z(e	ne	J	uau H	aji	- C,	, , ,	
se																			
P:	rte	un	, ـ	nus	√ 2	in	Ы,	su	h	, 9	и Э	dag	nīa	Me	i	W	(7	, 3,	h).
	7	J (1	٧,	3 /	Z		~	- >	__\	ν (7, ·	4,	1)						
																_			
In	tro	ol a	cią	mo	\	a ∧	.02	one	2	sli	pe	:tt i	n e	- pl	<u> </u>	ung	h cz:	₽ ą	
K	е	. t	ે તે ૧	lia	h	. :	è	и	n a	ر	slle	7101	ne	d	, 	h			
o	[re s) S 181		a	cit	me	tich	re		tu	te	di		une	he	22	a	
12) 	re s		150l	tant	e ,			1	<i>'</i>					,				
r	, † 1		C OV	14	L .) 	a M	e	le,	ner 1	ilo	,	N	CON	nuv	10	, ,+	160	
	gni	ina, le	h	د ا	ucc.	! [e ss	o[] lon	no i l	e an	rout	en. Tat	°, (a	lel	ь с NVO	im	.0 .0	el.	ر ص	
	Con	n u a	.e)	e	sib	isce	on o	[t.	nt;	6	ا وا	Γί	oli	ver	s,			<u></u>	
	TI,	etimi L2	, el	em 4	. d	e (r e-	llin	٤	puo	ે ગ	Ver		& [0 [-C =	านฉ	1812	S (
	1/1	6 <u>C</u>	11			U	- ,			111	111		11	11	///	///			
-	>			1//		///		///	,			<u></u>					///		
-	<u>ー</u> フ						1//,	•					,				<i>\\\\\</i>		
Ψ .00	[. [; v	ie		14.0	na ha	77	2	3		, +	2 - 1)					

Preliminari (Advanced) – Andrea Bianchi

													Dua	yc L	-01000	, ~				ливин
	$\overline{\mathbb{V}}$	(7	. , k	,h		è	un	ν	rat	. 6	الصلا	آ د	la v	122		95	ع مدا	e.e		
					1															
	per	· с	W1	e	818	e	વે	lma	2 N O	un	0	17	a	(1)	u	Λρ	ell			
	oli	t	a	ią	h	e	lu	ng h	e 775	1 4		0	0	un	s ·	prof	Γ.	au	12	
		•																		
	(K	+1) ,		pe	, r «c	gn	l	r	- Ca	bl or	92	10 NO	٤.						
							•													
	Le c	. M	WB	ر د	Se	esi	ste	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	W	(7,	κ,	72+ 1) ,	الھ	೯೯೪		V151	5 0		
	c	he	C	, V	r	C 0	or i	٧	lon	es	ist.	ono		et	ini	ø	Li.			
	+.	a gl	أع	۲t	1		Ne	γN	pη	6	/ale	г€,	qu	in	di	V 2 €	le	(2)	,	
	Q	UlV	ılı	e	515	le	1	\mathcal{N} (7,	h+	1)		rec	- \	N (~	, K+	1 /	1)	
										L										
					_	_	_	_	_	_				_	_		_	_		
	Q	rit	m	V	non	ه در		lun	4 a	k	11	n.e	ะฝล	S	CON	لعام	1	net	a`	
		د و	b	99	iun	get e	<u></u>	la	<i>ra</i> ,	dica	2_									
			_																	
	riss	512	M o	٦٥	а	K	, 0	ime	stc	13 m	9	1	(4,	h	p	er	ind	n 31.	∍n C	
	Fiss su	X	\ \ }	: 1	1	a <i>ss</i>	um	enol	. ං	il	63	وي	۾ ما	se	(11 6	e s is	ten	7	¥2
	di	W		1	Κ,	, 1.) e	a	nch	10	di	N	/ (r	, K	1	che	C	oml	VI	2 [0
	10					0.0	_	OF 0 (0.0	ent			K	1						
														/						
	11	ρą	९८७	2 م)	se	6 a.	se	k	=2		ю	2 [uni) p	10g [, а	cit.	n,	lun	ga
	0	(,		-0-	0	ケ	+ 1	η	Lu	rali		er.	un	pet	tin	e	d'	<u> </u>
	<u> </u>	1	51	4	COLF	161	e	1.		71	k		' '	o at		V		1 1	1	
	L	a g (ા ને	<i>\</i> √	L = 1	1	e	iun	nez	? ? ?	10:	= 2	Ø	ast	gno		2.2 na	. T '	. l i	
-	D		.]	44	11/0		p		//	7 .		_					, , =4 (, (יטק	
	Pass	9	1n4	u li	(VD		h ,	~	-) <i>h</i>	V+ 1		Su	ppo	nia	mo	c	re	1		
	V.	7	6	iste	1	W	('	7,K	,h) .		Voa	lia	MO	•	lim		he		
	esi	. اح	,		17	7	k	l,	1	10 A	r ,	ر ا	ualsi Co Fl	351	7					
1	621	3 V C	-	٧V	C "	一 丿	1 / '	Tru T	[7]	Pu	, ,	6 A.P	را ' ت	۱ ت ۱	-					

Preliminari (Advanced) – Andrea Bianchi

Siampaio integrate dette		601
Prendiamo	N un multiplo	opportuno di W(z, k, h)
N = M · V	V(n, K, h); divid	iamo i nameri {1 N }
		.). Se coloriamo con z
colori {1,	- Nogni blocco	esibisce una stringa di
∇(π, n,h)	colori, Cisono	(7 w (7, k, a)) possibili
stringhe.	•	
Esempio (E	per capire) W(r	,n,h) = 2 = = = = = = = = = = = = = = = = =
M = 5	$N = M \cdot \overline{W}(\overline{r}, n, \lambda) = 1$! O
m cy	nmmnmnnm	. 22
		locchi dello stasso "colore"
	ane 6	(OCCIO GE 118 STOSS COME
Il nostro	scops à trovare	una progr. aritmética di
p et (in i	atti ugaali	
$M = \overline{W}$	z', K, 1) (esiste	2 perché il caso l=1
	è	gia state conquistate)
Allora con	nunque coloro N	1=M.W(\(\bar{r},h,h\) con \(\bar{r}\)
coCori, c	i sara un petti.	re di tallia 1 e lunghezza
K, tatte	di K+1 blocchi	ne di taglia 1 e lunghezza i, con gli ultimi po sso modo.
010(211)		77124.0
Ogni bloca	o diquesti K	contienc un pettine

Preliminari (Advanced) – Andrea Bianchi

100	Stage Senior 2018 – Livello Advanced
(lo stesso pettine!) oli	taglia he lungh, K
(supponendo di hon essere	
gia trovato una proje.	lang 2 (+1).
In part. Supponiamo che	la radice del pattine aboia
un colore diverso dai d	ent,
hungé ki	
	X·Xx.
hungd K	
puter nerd	
t class	hi
he trunche un nothing de	i longhette te e taglie het 1
(se sono gottemento, il pro	- 17 C d in rett
in sand sectionaria, le ma	1. 1
progressine ang K+	omen ho ma
propressive ang 1+	1).
Determinate il noin W(2	(K) è plifficile
Gowers ha dim. che	
	2 K+9
il minimó W (r, k) 4	22
il minimó $W(r, k) \leq 2$	4
Se colorate § 1 N3 con numeri della oteno colore, d Teo (Szemerédi, 1975)	2 color, c/cono - N
numer della stans colore, of	ove - è un reale E (0,1)
Teo (Szemerédi, 1975)	

Preliminari (Advanced) – Andrea Bianchi

4	· > >	£6	٤	: E	(۰ ر و	1]	1	Ŧ;	ssāl	. 0	K		, e	sis	te				
										٧									Jue	
	SCE	ig l	iete		alı	nev	۱0		٤.	N	el	e m	eñt	[(di	{	1,		N	7
	que Lu	est in	i c	on H	te,	n go	no		hnc		0[0	gres	360V	re	2	r (]	me	etic	N S	
(V (·i a	me	nt	c		Si	zev	ner	éol		=>	۱ ر	/ ବ	n	dei	. V	Vac	rclev	1.
										T									infin	
		U																	ite	
	C	he		2	₁	-		=	: +	- 00		(LS .	50	· /	4=	,. [N	0 /	i-m	7
				م	€ A								50	A	<u> </u>	rune	ri	m	imi	,)
	A	ا م ا ا	-a igh	(è .	125	0	ch	e	A	Con	tie	ne	ę	reg	r, a	rit	m,		
	_															<i>-</i>		-		
			ch																	,
		20	, (Gra	2e v	Λ -	Ta	رو	20	04.) ,	41/1	iw	ter	∧Θ ∤	de	· 21	- (₂		
			mег								P)	og [al [t	m		un.	ne		
			\theta \t		V							T								
	/	4n	che		Lr	ol ő	5		>	Gr	een	_ l &	0		_					

Preliminari (Advanced) – Andrea Bianchi