
- CAUCHY - SCHWARZ -ENUNCIATO: Siano $a_1,...,a_n \in \mathbb{R}$, $b_1,...,b_n \in \mathbb{R}$. $\left(\sum_{i=1}^n a_i^2\right)\left(\sum_{i=1}^n b_i^2\right) \geqslant \left(\sum_{i=1}^n a_i b_i\right)^2$ $\frac{\text{dim}}{\text{Consideriamo}} \quad p(x) = \sum_{i=1}^{n} (a: x - b:)^{2} \quad \text{Somma di } \square = > p(x) \ge 0 \quad \forall x \in \mathbb{R}.$ Espandendo: $p(x) = x^2 \cdot \sum_{i=1}^{n} a_i^2 - 2 \times \sum_{i=1}^{n} a_i b_i^2$ p(x) > 0 = 0 $\Delta \in O$. Souriamo questa disu: $0 \ge \Delta = \left(\sum_{i=1}^{n} a_i b_i\right)^2 - \left(\sum_{i=1}^{n} a_i^2\right) \left(\sum_{i=1}^{n} b_i^2\right)$ ρ_{ine} • Quando vala = ? Se $\Delta = 0$ ovvero p(x) e quadrato, unico caso in cui esiste λ radice reale. => $0 = p(\lambda) = \sum_{i=1}^{n} (a_i \lambda - b_i)^2$ => $a_i \lambda - b_i = 0$ per i=1,...,n; ovvero c'é = se e solo se $\frac{a_i}{b_i}$ = costante. Nesloit a,b,c >0 $\sum_{c,d} \frac{a}{b+c} \geqslant \frac{3}{2}$ dim Vogliamo applicare Couchy - Schwarz, dolobiamo scegliere su cosa $\left(\sum_{i=1}^{3} x_{i}^{2}\right)\left(\sum_{i=1}^{3} y_{i}^{2}\right) \geq \left(\sum_{i=1}^{3} x_{i} y_{i}\right)^{2} \rightarrow \left(\sum_{i=1}^{3} x_{i} y_{i}^{2}\right)^{2}$ $= \left(\sum_{i=1}^{3} x_{i}^{2}\right) \left(\sum_{i=1}^{3} x_{i} y_{i}^{2}\right)^{2}$ $= \left(\sum_{i=1}^{3} x_{i}^{2}\right) \left(\sum_{i=1}^{3} x_{i}^{2}\right)^{2}$ $= \left(\sum_{i=1}^{3} x_{i}^{2}$ Dolobiamo scegliera gli y: X 1º tentativo: vogliamo togliere i denominatori degli x: => y, = 16+c e cicliche $\frac{\sum_{b+c} \frac{a}{b+c} \geq \frac{\left(\sqrt{a} + \sqrt{b} + \sqrt{c}\right)^2}{\left(\sqrt{b} + c\right) + \left(\sqrt{a} + b\right)}}{\sqrt{a}} \qquad \text{NON ci piaceiono le } \int al nuerubre$ √ 2° tentertivo: y, = √a. (6+c) (a+6+c) 2 vogliamo dinostrorla Nuova tesi: (a+6+c) > 3 (alo+bc+ca) $a^{2}+b^{2}+c^{2}+2(ab+bc+ca) \ge 3(ab+bc+ca)$ a2+62+c2 ≥ alo+loc+ca / Un immediato carollario di Condry-Schwarz e la disugnaglianza di Titu. Prendiamo C-S con $a_i = \frac{\times i}{\sqrt{y_i}}$, $b_i = \sqrt{y_i}$ Siano $x_1, \dots, x_n \in \mathbb{R}$ $y_1, \dots, y_n \in \mathbb{R}^+$. $\sum_{i=1}^n \frac{x_i^2}{y_i} \geqslant \frac{\left(\sum_{i=1}^n x_i\right)^2}{\sum_{i=1}^n y_i}$ Di fatto la nostra sol della Nesbitt é Titu con X1=a, Y1 = a(b+c) e cirlicle

A. 1 1 1 1 1 1		disugua glian zu			
media quadratica	- HM Se W media armonica	a1,,an>0	<u>аі++ай</u> » а	n +an > ~ai	$\frac{1}{\alpha_1} + \dots + \frac{1}{\alpha_n}$
Ma possiamo de	finize una v	media tra u	numeri in m	nolti altri mo	li .
(def.) media 1	- esima Si	ano a1,, an	>0 e sia	pe 1R, p = 0	
			, an) := \(\frac{1}{n} \sum_{i=}^{n}		
1) 0					
	o poriamo	Mo (a ₁ ,, a _n)	= "\a1:an,	ovvero GM.	
olcuni esempi	P= 1 :	M₁ é AM M₂ é QH			
	P = -1:	M_1 e H	1		
Vale la segu	oute · se	2 a ₁ ,, a _n >0	p>q =>	M ₂ (q ₄ q ₃)	> Ma (a4 an)
		,,,	P 7 - 7	, τρ (ωτ ,, ων ,	, , , , , , , , , , , , , , , , , , , ,
É jutoressante	cosa succede	per D -> ± (00. Supponiame	o che o sia	mande e
$a_1 > a_2,,a$	n (ad esemp	$a_1 = 3, a_2$	2= = an = 2).	Allora nella	Sommo
at + + at contributo o	il termine	che domina diventa insigni	é at. Pi ficante a cons	u p é grans Pronto	le, più il
				/	
se d	→ + ∞	Mp (a1,, an)) = max a;	(usiamo ch	e per α costant \rightarrow 1 se $p \rightarrow +6$
e analoga	mente:	Mp (a1,, an)	i=4,,h		
SE P					
	. chiaro che	L max a	: > Mp (a1,,	an) > min a	
É inoltze		i=1,,n		i=1,,b	
É inoltze		·- (<i>,,</i> ··			
É inoltze In tutte ()	k disuguagli	anze di quesi	ta sezione, vo	la = se e sol	20 se a ₄ = = a
É inoltze In tutte ()	k disuguagli	anze di quesi	ta sezione, vo	la = se e sol	20 se a ₄ = = a
É inoltre In tutte 6 problema (TAIL	Le disuguaglie UAN TST 2014	anze di quesi) a.b.c > o.	Hostrore $3\sqrt{\frac{a^3+}{a^3+}}$	$l_0 = se e sole $ $\frac{b^3 + c^3}{3} + 8^3 a b c$ $\frac{3}{3} = M_3, M_0,$	$20 \text{ se } \alpha_1 = \dots = \alpha_1$ $2 \leq 3 (a + b + c)$ $4 \leq 3 \leq 3$
É inoltre In tutte 6 problème (TAIL	Le disuguaglie UAN TST 2014	anze di quesi) a.b.c > o.	Hostrore $3\sqrt{\frac{a^3+}{a^3+}}$	$l_0 = se e sole $ $\frac{b^3 + c^3}{3} + 8^3 a b c$ $\frac{3}{3} = M_3, M_0,$	$20 \text{ se } \alpha_1 = \dots = \alpha_1$ $2 \leq 3 (a + b + c)$ $4 \leq 3 \leq 3$
É inoltre In tutte 6 problème (TAIL	Le disuguaglie UAN TST 2014	anze di quesi) a.b.c > o.	Hostrore $3\sqrt{\frac{a^3+}{a^3+}}$	$l_0 = se e sole $ $\frac{b^3 + c^3}{3} + 8^3 a b c$ $\frac{3}{3} = M_3, M_0,$	$20 \text{ se } \alpha_1 = \dots = \alpha_1$ $2 \leq 3 (a + b + c)$ $4 \leq 3 \leq 3$
É inoltre In tutte 6 problème (TAIN Jim Vogliame LHS Si pur Proviamo p	e disuguaglie UAN TST 2014 USare le m vedore facil	anze di quesi) a.b.c > 0. medie. In quel mente come	Hostrore $3\sqrt{\frac{a^3+}{3}}$ i compare il $M_{1/3}$. Con cosa	$l_0 = se e sole$ $\frac{b^3+c^3}{3} + 8 \sqrt[3]{a} \cdot b \cdot c$ $\frac{3}{3} \cdot M_3, M_0,$ $l_0 = se e sole$	20 Se $a_1 = = a_1$ 2 ≤ 3 (a+b+c) M _{1/3} ? Some $p \geq \frac{1}{3}$.
É inoltre In tutte 6 problème (TAIN Jim Vogliame LHS Si pur Proviamo p	e disuguaglie UAN TST 2014 USare le m vedore facil	anze di quesi) a.b.c > 0. medie. In quel mente come	Hostrore $3\sqrt{\frac{a^3+}{a^3+}}$	$l_0 = se e sole$ $\frac{b^3+c^3}{3} + 8 \sqrt[3]{a} \cdot b \cdot c$ $\frac{3}{3} \cdot M_3, M_0,$ $l_0 = se e sole$	20 Se $a_1 = = a_1$ 2 ≤ 3 (a+b+c) M _{1/3} ? Some $p \geq \frac{1}{3}$.

-BUNCHING / RAGGRUPPAMENTO / MUIR HEAD

- · le disuguaglianze (polinomiali) viste finoza avevano a che fare con termini tutti dello stesso grado, come a2+62+c2 > ab + bc + ac (grado 2).
- Rivedendole, il principio generale é che "termini più concentrati" sono più grandi di "termini più mescalati". Ad esempio:

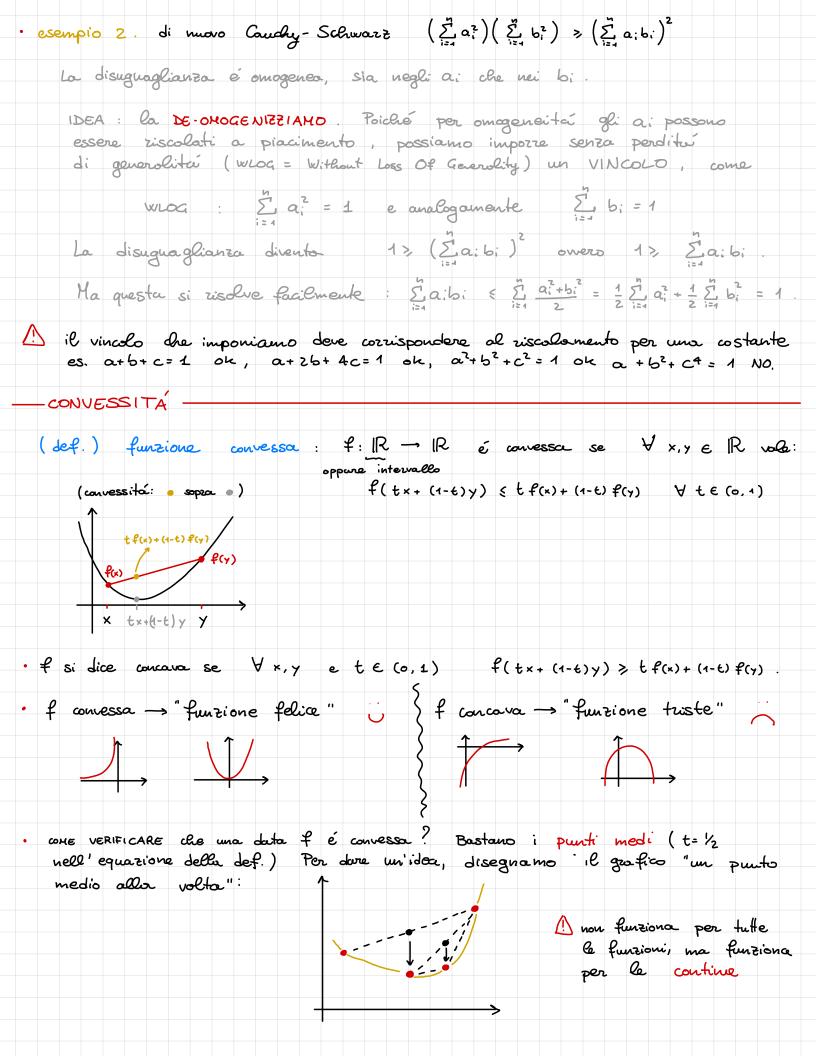
 - · a2 + b2 + c2 > ab + bc +ac
 - $a^3 + b^3 + c^3 \ge 3$ aloc
- · La disignoglianza di Muizhead formalizza questa intuizione.

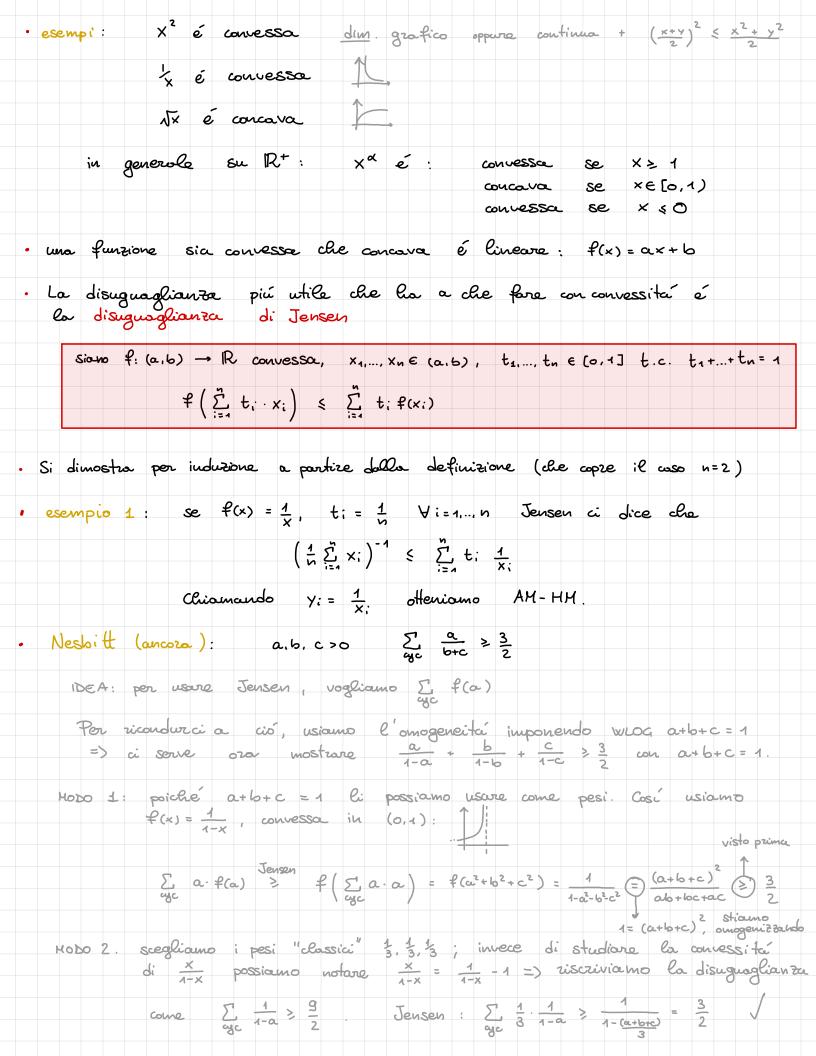
Siano
$$a_1, ..., a_n > 0$$
 e $x_1, ..., x_n, y_1, ..., y_n \in \mathbb{R}$ t.c. $\begin{cases} x_1 + ... + x_n = y_1 + ... + y_n \\ x_1 + ... + x_k > y_1 + ... + y_k \end{cases}$ $\forall k = 1, ..., n$

=> $\sum_{\text{Sym}} a_1^{x_1} \cdot ... \cdot a_n^{x_n} > \sum_{\text{Sym}} a_1^{y_1} \cdot ... \cdot a_n^{y_n}$

- Tutte & disuguaglianze di bunching si possono dimostrare con AM-GM possita, come ad esempio $2(a^3+b^3+c^3)$ > $a^2b+ab^2+b^2c+c^2b+c^2a+a^2c$ (si dimostra in modo identico a a3+b3+c3 > a2b+b2c+c2a)
- Commentiamo l'enunciato : $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i \rightarrow i$ termini hanno stesso grado
 - $\sum_{i=1}^{n} x_i > \sum_{i=1}^{n} y_i \quad \forall k=1,...,n \rightarrow "concentrazione"$
 - · [] pensandola come AM-GM pesata, sym some a far "violene tutti i pesi"
 - \triangle $a^3 + b^3 + c^3 > a^2b + b^2c + c^2a$ NON é conseguenza di bunching; la somma é ciclica e non simmetrica. Siamo dobligati a usare AM-GM.

- RIARRANGIAMENTO


- domanda al lettore: Siano a,b,c, x,y,z con {a,b,c} = {1,2,3} e {x,y,z} = {10,20,30}. Come massimizzare / minimizzare ax + by + cz? max -> 1.10 + 2.20 + 3.30 min -> 1.30 + 2.20 + 1.30
- · L'idea é che por massimizzare / minimizzare vogliamo accoppiare termini grandi con termini grandi / piccoli. La disuguaglianza di riarrangiamento formalizza questa idea.


Siano $a_1 \in ... \in an$, $b_1 \in ... \in bn$ e $\sigma: \{1, ..., n\} \rightarrow \{1, ..., n\}$ permutazione. $\sum_{i=1}^{n} a_i b_{\sigma(i)}$ é massima se $\sigma(i) = i$, minima se $\sigma(i) = n+1-i$.

dim. Se n=2 diventa a161 + az bz > a162 + a261 (a, -a2)(b, -b2) > 0

40 40

DEA INTERESSANTE	: a intuito coi negativi.	potzebbe conv Un modo	incerci iiarro di convincers	ingiamento	per a., b.; po	sitivi',
· VERSIONE 1:	la dimostrazio	one usa solo	le differente	e : ai-aj	e bi-bj j ostanle le dis com	00
	nou cambian	$p = p \cdot q \cdot$	dimostrazione	ur stessa a Lunziona an	are le au	tterev
VERSIONE 2:	cambiando	a; con a; +	te bj	ion bj+S	si ha:	
	5 (a;+t)	(bac) + s)	= 5, a; b=(:)	+ 55, a:	+ t 5 b; + s	tn
		0		costav	ite al variare d su soluzione	: 0
onclusione: se	gli ai, b	sous negat	tivi, traslia	mo in avo	unti e sono pos	itivi
/		9			<u>'</u>	
— OMOGENEITA						
Jef.) funzione	omogenea.	f(a,b,c) s	i dice omogen	ec se V	1 λ ≠ o si Ga	
ξ (λα,	26, 2c) =	f(a,b,c)	4		,,,,	
			mogenea se	é equivol	ente a 7 >	ο,
			omogenea se De varialoiCi	é equivole del probles	ente a f >	ο,
Siciamo che (per qualche :	una disuguag f funzione		mogenea se De varialoili NO	é equivole del probles	ente a f >	ο,
Diciamo che c per qualche : sempi: • f(a • f(a	una disuguage f funzione , b, c) = 0	lianza é o amaganea del + b+ C 4b + b/c + c/a	0N)2	é equivolde del probles	ente a f >	ο,
Diciamo che i per qualche : sempi: • f(a • f(a	una disuguage f funzione , b, c) = 0	lianza é o amaganea del + b+ C 4b + b/c + c/a	NO Sí Sí	é equivoli del probles	ente a f >	0,
Diciamo che c per qualche : sempi: • f(a • f(a	una disuguag f funzione .,b.c) = 0	lianza é o amaganea del + b+ C 4b + b/c + c/a	0N)2	é equivole del probles	ente a f >	0,
Diciamo che per qualche : sempi: • f(a • f(a • f(a	una disuguage $f funzione$ $(b, c) = 0$ $(b, c) = 0$ $(b, c) = 0$ $(x) = x^2 - 1$	lianza é o amoganea del + b+ C 2/b + b/c + c/a a/b	NO Sí Sí	é equivoli del probles	ente a f >	0,
Diciamo che s por qualche : sempi: • f(a • f(a • f(a	una disuguage f funzione , b, c) = 0	lianza é o amoganea del + b+ C 2/b + b/c + c/a a/b	NO Sí Sí NO	é equivoli del probles		
Diciamo che s per qualche : sempi: • f(a • f(a • f(s	una disuguage $f funzione$ $(b, c) = 0$ $(b, c) = 0$ $(x) = \frac{x^2 - 1}{x}$ $(x, y) = \frac{x^2 + y^2}{x^2 + y^2}$	Rianza é o amoganea del + b+ C 2/b + b/c + c/a a/b	NO Sí Sí NO		i polinomi ho tutti monomi o stesso grudo	
Siciamo che s per qualche : sempi: • f(a • f(a • f(s	una disuguage $f funzione$ $(b, c) = 0$ $(b, c) = 0$ $(x) = \frac{x^2 - 1}{x}$ $(x, y) = \frac{x^2 + y^2}{x^2 + y^2}$	Rianza é o amoganea del + b+ C 2/b + b/c + c/a a/b	NO Sí Sí NO	é equivoli del probles omogenes se	i polinomi ho tutti monomi s stesso grado	unn o
Siciamo che s per qualche : sempi: • f(a • f(a • f(s	una disuguage $f funzione$ $(b, c) = 0$ $(b, c) = 0$ $(x) = \frac{x^2 - 1}{x}$ $(x, y) = \frac{x^2 + y^2}{x^2 + y^2}$	Rianza é o amoganea del + b+ C 2/b + b/c + c/a a/b	NO Sí Sí NO		i polinomi ho tutti monomi s stesso grado	unn o
Diciamo che per qualche: sempi: • f(a • f(a • f() • f()	una disuguage f funzione $h, c) = 0$	lianza é o amoganea del + b+ C 2/b + b/c + c/a a/b (= polinomio polinomio	NO Sí Sí NO	omogenea sc	i polinomi ho tutti monomi o stesso grudo	unn o
Diciamo che s per qualche: sempi: f(a f(a f(s f(a f(s se uno funzione	una disuguage f funzione $h, c) = 0$ $h, c = 0$ h	liante é o amoganea del + b + C 2/b + b/c + c/a a/b	NO Si Si NO Si $a^{2}+b^{2}+c^{2} > a^{2}$	omogenes se	i polinomi ho tutti monomi s stesso grado	unn o
Diciamo che (per qualche : sempi: • f(a • f(a • f(a • f(se una funzione sempio 1: se	una disuguage f funzione $h, c) = 0$ $h, c = 0$ $h,$	Rianza é o amoganea del + b + C 2/b + b/c + c/a a/b Polinomio aloc = 1 OGENIZZARE	NO Si Si NO Si $a^{2}+b^{2}+c^{2} > b^{2}$ $e^{1} = espression$	omogenea se	i polinomi ho tutti monomi e stesso grado i gradi dei po sono uguoli	unn o
Diciamo che (per qualche : sempi: • f(a • f(a • f(a • f() • f()	una disuguage f funzione $h, c) = 0$ $h, c = 0$ $h,$	Rianza é o amoganea del + b + C 2/b + b/c + c/a a/b Polinomio aloc = 1 OGENIZZARE	NO Si Si NO Si $a^{2}+b^{2}+c^{2} > a^{2}$	omogenea se	i polinomi ho tutti monomi e stesso grado i gradi dei po sono uguoli	unn o
Diciamo che (per qualche : sempi: • f(a • f(a • f(a • f() • f() se una funzione sempio 1: se	una disuguage f funzione h , c) = a h , c) = a f f f f f f f	lianze é o amoganea del + b + C 2/b + b/c + c/a a/b	NO Si Si NO Si $a^{2}+b^{2}+c^{2} > 3i$ $b^{2}+c^{2} > 3i$	omogenea se	i polinomi ho tutti monomi s stesso grado i gradi dei po sono uguoli per aloc	uno leQo Linom
Diciamo che (per qualche : esempi: · f(a	una disuguage f funzione h , c) = a h , c) = a f f f f f f f	lianze é o amoganea del + b + C 2/b + b/c + c/a a/b	NO Si Si NO Si $a^{2}+b^{2}+c^{2} > b^{2}$ $e^{1} = espression$	omogenea se	i polinomi ho tutti monomi s stesso grado i gradi dei po sono uguoli per aloc	un o leQo Linom

- 1 a, b, c >0 con abc = 1. Colculare min $(a^4 + b^2 + c)$ al variare di a, b, c.
- 2 a, b, c > 0. Mostrore in almeno 2 modi $\frac{a}{b} + \frac{b}{c} + \frac{c}{a} > 3$.
- 3 trovare le migliori costanti k_1 , k_2 t.c. $k_1 \leq \frac{a}{a+b} + \frac{b}{b+c} + \frac{c}{c+a} \leq k_2$
- 4 Siano a, b,c > 1. Mostriamo $\frac{a+b+c}{4} \ge \frac{\sum_{i} \sqrt{ab-1}}{b+c}$.
- Ino 4/2023 Siano $x_{1,...}, x_{2023} > 0$ a 2 a 2 distinti. Definialno

 an := $\sqrt{\left(\sum_{i=1}^{n} x_i\right)\left(\sum_{i=1}^{n} \frac{1}{x_i}\right)}$ e supponiano $a_n \in \mathbb{Z} \ \forall \ n = 1,..., 2023$.

 Dimostrore che $a_{2023} \ge 3034$
- 6 Mosture (1+az)2. (1+a3)3. ... (1+an)2 N

ALTRI PROBLEMI (PER CASA): EGMO 2/2010, EGMO 2016/1, 140 2/2001

Soluzioni nella pagina

			_		
	<-	/ 11	己		N I I
•	ىد	ーし	$ \cup$	\mathbf{C}	'V

a, b, c >0 con abc = 1. Calculare min (a4+b2+c) al variare di a, b, c. Per AM-GM pesata, con pesi (1/2,1)

$$\frac{(4a^{4}) \cdot \frac{1}{4} + (2b^{2}) \cdot \frac{1}{2} + c \cdot 1}{\frac{7}{4}} \leq \left(\frac{(4a^{4})^{\frac{1}{4}}}{(2b^{2})^{\frac{1}{2}}} \cdot c \right)^{\frac{4}{7}} = 4^{\frac{1}{7}} 2^{\frac{2}{7}}$$

$$= > a^{4} + b^{2} + c \leq \frac{2^{\frac{18}{7}}}{7}$$

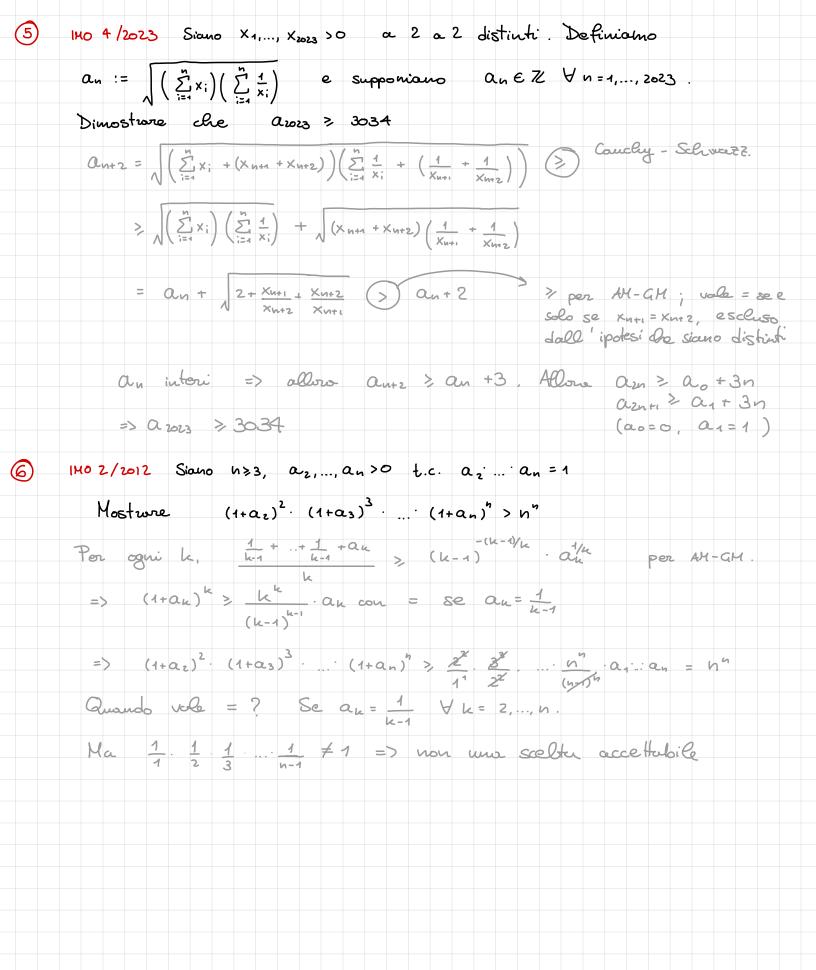
(anche pesi (1,2,4) funzionano)

2 a, b, c > 0. Mostrore in almeno 2 modi $\frac{a}{b} + \frac{b}{c} + \frac{c}{a} > 3$

MODO 2: Titu:
$$\sum_{ij} \frac{a}{b} = \sum_{ij} \frac{a^2}{ab} > \frac{(\sum_{ij} a)^2}{\sum_{ij} ab} = \sum_{ij} \frac{a^2}{ab} > 3$$

HODO 3: viarrangiamento: who a é il massimo

trovare le migliori costanti k_1 , k_2 t.c. $k_1 \le \frac{a}{a+b} + \frac{b}{b+c} + \frac{c}{c+a} \le k_2$


Notiamo che sostituendo (a, b,c) = (a,c,b) otteniamo a + c + b e che a + b + c + a + c + b = 3 => k1 + k2 = 3

Titu:
$$\sum_{i,j\in a} \frac{1}{a+b} = \sum_{i,j\in a} \frac{1}{a^2+ab} > \sum_{i,j\in a} \frac{1}{a^2+ab} > 1$$

Per dire de e la costante ottimale, siano (a,6,c) = (1, E^2 , E)

L é un ESTREMO INFERIORE, non un minimo.

Siano a, b, c > 1. Mostriamo $\frac{a+b+c}{4} > \frac{5}{4}$ yc $\frac{1}{b+c}$

