Geometria - vettori 2

Esercizio 1. Siano A e B due punti e sia $\lambda \in \mathbb{R}$, con $\lambda \neq 1$. Consideriamo il vettore $\vec{P} = \lambda \vec{A} + (1 - \lambda)\vec{B}$.

- 1. Dimostrare che il punto P è interno al segmento AB se e solo se $0 < \lambda < 1$.
- 2. Dimostrare che il punto P si trova sulla semiretta uscente da A che non contiene B se e solo se $\lambda > 1$.
- 3. Dimostrare che il punto P si trova sulla semiretta uscente da B che non contiene A se e solo se $\lambda < 0$.

Esercizio 2. Sia ABC un triangolo e sia D sulla retta AB il piede della bisettrice esterna da C. Determinare λ tale che $\vec{D} = \lambda \vec{A} + (1 - \lambda)\vec{B}$.

Esercizio 3. Sia ABC un triangolo e sia P sul segmento AB il punto in cui la circonferenza inscritta è tangente al lato AB; determinare $\lambda \in \mathbb{R}$ tale che $\vec{P} = \lambda \vec{A} + (1 - \lambda) \vec{B}$.

Esercizio 4. Sia ABC un triangolo rettangolo in A. Scrivere, in termini di \vec{A} , \vec{B} , \vec{C} , ortocentro, baricentro e circocentro di ABC e verificare che sono allineati.

Esercizio 5. Siano $A_1, \ldots, A_n, B_1, \ldots, B_n$ punti del piano tali che esiste \vec{P} per cui $\vec{A}_j = \vec{B}_j + \vec{P}$ per $j = 1, \ldots, n$. Mostrare che i poligoni A_1, \ldots, A_n e B_1, \ldots, B_n sono congruenti.

Esercizio 6. Sia ABCD un quadrilatero inscritto in una circonferenza di centro O; siano G_A , G_B , G_C , G_D i baricentri di BCD, CDA, DAB, ABC rispettivamente.

- 1. Esprimere i vettori \vec{G}_A , \vec{G}_B , \vec{G}_C , \vec{G}_D in termini dei vettori \vec{A} , \vec{B} , \vec{C} , \vec{D} .
- 2. Mostrare che esistono un vettore \vec{X} e un numero reale k tali che $\vec{G}_A = k\vec{A} + \vec{X}$ e così via.
- 3. Concludere che anche il quadrilatero $G_AG_BG_CG_D$ è inscrittibile e determinare il centro della sua circonferenza circoscritta.