Geometria - sintetica 1

In quanto segue, ABC è un triangolo, H è il suo ortocentro (incontro delle altezze), Γ è la circonferenza circoscritta ad ABC ed O è il centro di Γ , ω è la circonferenza inscritta in ABC ed I è il centro di ω .

- Esercizio 1. Siano E, F i punti in cui ω tocca i lati CA e AB. Allora il quadrilatero AEIF è ciclico.
- Esercizio 2. Siano H_A e H_B i piedi delle altezze da A e da B su BC e AC. Allora BH_AH_BA è ciclico.
- Esercizio 3. Sia I_A l'excentro opposto ad A; allora IBI_AC è ciclico.
- **Esercizio 4.** Si supponga ABC acutangolo e sia H' il simmetrico di H rispetto al lato AB. Allora AH'BC è ciclico.
- **Esercizio 5.** Si supponga ABC ottusangolo e sia H' il simmetrico di H rispetto al lato AB. Allora AH'BC è ciclico.
- Esercizio 6. Sia D il simmetrico di A rispetto al punto medio di BC e sia E il simmetrico di D rispetto al segmento BC. Allora E sta su Γ .
- **Esercizio 7.** Siano M_A , M_B i punti medi di BC e CA, H_A , H_B i piedi delle altezze da A e da B su BC e CA. Mostrare che M_A , M_A , M_B , H_B stanno su una circonferenza.
- Esercizio 8. Sia Ω una circonferenza e siano P, Q, R, S, T cinque punti su di essa in questo ordine, di modo che Q sia punto medio dell'arco PR. Chiamiamo E ed F le intersezioni di PS con QT e di RT con QS; dimostrare che EFST è ciclico.
- **Esercizio 9.** Siano Γ_1 e Γ_2 due circonferenze che si intersecano in X e Y; siano P e Q su Γ_1 e siano R e S le seconde intersezioni di PX e QY con Γ_2 . Dimostrare che esiste una circonferenza Γ_3 che passa per P, Q, R, S.
- Esercizio 10. Nella situazione dell'esercizio precedente, mostrare che PQ, XY, RS concorrono.
- **Esercizio 11.** Siano Γ_1 e Γ_2 due circonferenze che si intersecano in X, Y. Scegliamo due punti P, Q su Γ_1 ed un punto R su Γ_2 , di modo che P, Q, R non siano allineati, e sia Γ_3 la circonferenza per P, Q, R. Sia S è la seconda intersezione di Γ_2 e Γ_3 ; dimostrare che se P, R, X sono allineati, allora anche Q, S, Y sono allineati.
- Esercizio 12. Siano Γ_1 e Γ_2 due circonferenze che si intersecano in X e Y. Siano P su Γ_1 e Q su Γ_2 tali che PQ sia tangente a entrambe le circonferenze; mostrare che il punto medio di PQ sta su XY.